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ABSTRACT 

Over 80% of the current production of single crystal silicon, which is 

the preferred material for solar cells, is manufactured by the Czochralski 

(CZ) crystal growth technique. The manufacture of high quality crystals 

requires full quantification of the thermal environment in the CZ puller 

and the development of quantitative relationships among the many process, 

design and operating variables. Since this cannot be accomplished solely 

by experimental work a modeling study was undertaken. 

provides the proper framework for the evaluation of the effects of various 

variables on crystal quality. 

as follows: 

i> 

This modeling effort 

The accomplishments of the present study are 

A complete finite-element heat-transfer model for the CZ-puller is 

established under the assumption that heat transfer is conduction 

dominated in the melt. All other heat transfer mechanisms 

including radiation are treated with rigor, and the crystal-melt 

interface shape is calculated from the heat balance as part of 

the solution. This model should provide the complete solution to 

the CZ growth problem if supplied with heat transfer coefficients 

from the melt side which in turn requires the solution of the 

melt hydrodynamics. 

ii) Radiation view factors for short crystals were established. This 

is necessary information for the initial growth stage of the process. 

The model developed in i) was used to yield simpler models to be used 

on-line in control of crystal diameter and interface shape. 

A rigorous finite-element model was developed for calculation of 

residual thermal stresses in the crystal. 

A preliminary model of the melt hydrodynamics was established and 

basic hydrodynamic phenomenon were investigated. 

iii) 

iv) 

v) 
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D 
SUMMARY 

This study focuses on the development of a mathematical model for the 

simulation of the Czochralski (CZ) process used for the manufacture of silicon 

crystals. 

melt along with the crystal-melt interface shape and the pull rate assuming 

either conduction dominated heat transfer in the melt or known heat transfer 

coefficients. 

of the crystal by influencing the radial dopant concentration profile. 

pull rate is important in keeping the diameter of the crystal constant and 

in achieving the acceptable level of productivity. 

in the crystal is needed to calculate the thermal stresses in the crystal, 

which in turn are used to estimate the extent of dislocations in the wafers 

d o n g  the crystal. ?he proposed CZ simulator provides useful information 

in determining the process conditions for: (1) The growth of a uniform 

diameter crystal; (2) optimization of the pull rate; (3) maintenance of 

uniform dopant concentration; (4) the production of dislocation free crystals. 

The model is also useful for interpretation of the experimental data and 

for pursuing improvements in the various aspects of the growth process. 

The statement of work included the following specific objectives (tasks): 

1) 

The model predicts the temperature field in the crystal and the 

The shape of the crystal-melt interface affects the quality 

The 

The temperature field 

Perform a critical literature survey relating to mathematical modeling 

of the crystal growth process. 

Develop an algorithm/model suitable for predicting the temperature 

distribution in the crystal, and for calculating the melt-crystal interface. 

Perform parametric studies using the computer algorithdmodel developed 

in (2). 

Develop the detailed modeling of the hydrodynamics in the melt. 

Assess the capability of the model using available experimental data. 

2) 

3) 

4) 

5 )  

- vi - 
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a 

The accomplishment of the above tasks is described in this report. The 

detailed literature survey on thermal modeling and melt hydrodynamics was 

reviewed and summarized in the 1st quarterly report. It was concluded that 

most of the past studies in the literature are based on simplifying assump- 

tions and focus on some specific aspect of the process. 

model of the system was lacking. 

the complete system consisting of the crystal, melt and the enclosure. The 

effects of the melt-gas meniscus shape and detailed radiation calculations, 

accounting for both direct and reflected radiation, have been incorporated 

in the model. A sequential modular computational approach is used for the 

simulation. 

Thus, a complete 

The present modeling approach looks at 

This work was described in the 1st quarterly report. 

The detailed model of the CZ process has been used for extensive para- 

metric studies. 

interface shape are examined and explained. 

model are used to develop a simple model which describes the relationships 

among the important variables such as crystal radius (R), pull rate (v), 

crucible temperature (Tc), melt volume (V,) and interface shape. 

The effects of important variables on growth rate and 

the results of the detailed 

The simple model can be used to simulate the entire growth cycle of the 

CZ process. 

operating strategies to monitor the growth process. 

detail in the 2nd and 4th quarterly reports. 

The model can also be used to develop and implement various 

This was discussed in 

A novel technique which uses a gas jet to control the growth process is 

developed and demonstrated based on the above simulations. 

the gas flow rate through the jet can be used to control the crystal diameter. 

The crystal diameter is more stable when the crystal is grown in a convection 

dominated environment, and diameter control by gas jet cooling I s  more effective 

than control through adjustments of crucible temperature or pulling rate. 

In the presence of jet cooling, it may be possible to simultaneously control 

The adjustments of 
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both the diameter and the interface shape. 

presented in the 3rd quarterly report. 

The details of this work were 

A steady-state model of the hydrodynamics in the melt was also developed 

to study the relative effects of conduction and convection heat transfer. 

The Navier-Stokes equations with the Boussinesq approximation are solved 

with a finite element solution technique. 

useful in studying and characterizing the relative importance of the various 

phenomena (such as natural convection, crystal rotation, thermocapillary 

flow, etc.) that dictate the melt flow field. However, convergence is not 

achieved at the Reynolds and Grashoff numbers characteristic of the 

commercial operating region of interest. 

may be of oscillatory nature and a transient model may be needed. 

would indicate that quality crystals cannot be grown without the stabilizing 

effect of a magnetic field. 

VI1 of the report. 

The model and the computer code are 

This implies that the flow field 

This 

Hydrodynamic modeling is discussed in section 

Thermally induced stresses are one of the major causes of dislocations 

(by slip and twinning) in the crystal. Preliminary stress calculations 

were performed to study the dislocation density distribution on the wafer 

surface. It was concluded that the best quality of the wafer is obtained 

in the region between the center and the outer periphery. This distribution 

has also been observed in past experimental investigations. The key to 

reducing the stress levels in the crystal is to have growth at low Biot 

numbers. 

The work performed at the Chemical Reaction Engineering Laboratory 

(CREL) under this contract resulted in the following publications. 
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I. INTRODUCTION 

The Czochralski (CZ) process (also known as the Teal-Little Technique) 

is the backbone of today's semiconductor industry and one of the main sources 

of solar grade silicon. 

The raw material is melted in a quartz crucible and kept in the molten state 

by inductive or resistive heating. A seed crystal, of suitable orientation, 

is suspended over the crucible in a chuck. For growth, the seed is inserted 

into the melt until its end is molten. 

in a single crystal which grows by progressive freezing at the liquid-solid 

interface. 

is water cooled and flushed with an inert gas such as argon. 

of the furnace is shown in Figure 1. 

the heater power (crucible temperature) is manipulated using a PXD controller. 

The crucible position is also gradually lifted to compensate for the drop 

in the melt level. 

liquid interface relative to the heater orientation throughout the entire 

growth cycle. 

free convection cells. 

resistivity range as high as 25-50 ohm-cm and crystal diameters up to as 

large as 150 mm over 802 of the ingot length are obtained. 

The growth process at first sight looks simple. 

It is then slowly withdrawn resulting 

The entire assembly I s  enclosed within a quartz envelope which 

The schematic 

To assure constancy of the diameter, 

The idea is to maintain the same position of the solid- 

Both the crucible and the crystal are rotated to suppress 

By suitable programming of spin and pull rates, a 

The production of superior quality Si crystals demands that the follow- 

ing requirements be fulfilled. 

1) 

2) 

3)  

4) 

Uniform diameter of the ingot. 

Optimization of the pull rate. 

High (axially and radially uniform) resistivity. 

Production of uniform dislocation free crystals. 

The diameter of the growing crystal is mainly determined by the inter- 

action of the set pull rate and the heat transfer environment in the crystal, 

- 1  - 
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Figure 1. Schematic of a Czochralski Single Crystal Puller --- Indicates radiation interaction between 
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melt and the furnace (ambient and the walls). 

can be related to imbedded dopant and Impurity concentrations. 

profiles in the crystal are very closely related to the nature of the crystal- 

melt interface and the mass transport in the melt. The extent of dislocations 

generated in the crystal are determined by the level of thermally induced 

residual stresses in the crystal, which in turn are directly related to 

the temperature field in the crystal. 

transport in the melt are affected by the melt hydrodynamics due to the 

interactions of forced and natural convection. 

The resistivity profiles 

The dopant 

Additionally, the heat and mass 

It is established that the quality of the growing crystal is related 

in a quantitative way to the hydrodynamics, mass and heat transfer in the 

melt and to heat transfer in and from the crystal. 

affected by several variables which can be classified as follows: 

These phenomena are 

i) Geometric variables which are fixed for a given puller, e. g., 

crucible and enclosure shape, heater position, etc. (These could 

also be categorized as puller design variables). 

Process variables which are governed by the selected operating 

schedule, e.g., melt depth, height of exposed crucible wall, 

crystal diameter, etc. 

ii) 

lii) Manipulative variables which could be used for control, e.g., heater 

power, pull rate, crystal and crucible rotation speed, crucible 

lift rate, gas flow rate, etc. 

The problem of calculating the temperature profile in the crystal is 

coupled with the problem of determining profiles in the melt, and hence, 

a complete analysis of the combined system (crystal + melt) is necessary for 
proper modeling of the process. 

self coupled with the flow field or hydrodynamics of the system due to the 

The temperature profile in the melt is in it- 

interaction of forced and natural convection and thermocapillary flow. 

- 3 -  



Further complexity arises due to the fact that the melt-crystal interface 

cannot be fixed a priori and must be determined by energy balance con- 

siderations. Thus, the problem is of the 'floating' boundary condition 

type and the interface shape has to be determined as part of the solution. 

Hence, it is not surprising that literature studies focus only on some 

selected aspects of the system and a complete and rigorous model is 

lacking. 

In addition to the prediction of temperature profiles in the system, 

it is necessary to predict the concentration distribution of impurities, 

such as oxygen and carbon, and dopants such as boron. 

to examine the operating conditions which can lead to a desired distribution 

of these 'solutes'. 

the solute distribution is affected by the convective flow field in the melt 

which is, in turn, dependent on the temperature profiles. 

It is also necessary 

Here again the problem is complex due to the fact that 

The systematic modular approach to this complex problem developed at 

the Chemical Reaction Engineering Laboratory (CREL) is shown schematically 

in Figure 2. The specific objectives of this project were as follows: 

1. 

0 

Perform a critical literature survey relating to mathematical modeling 

of the CZ growth process. 

2. Develop an algorithm/model for the CZ process suitable for predicting 

the temperature field in the crystal including the pull rate and the 

interface shape. Conduction is assumed to be the dominant mode of heat 

transport in the melt. 

Perform parametric studies using the computer algorithm/model developed 

in (2).  

Develop simple models which describe the relationships between the per- 

tinent variables in the multiparameter space. 

3. 

4. 

These models can then run 

on line to implement the desired operating policy. a 
- 4 -  
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5 .  Develop a novel technique of improving the controllability of the crystal 

diameter and achieving a simultaneous control of crystal diameter and 

Interface shape. 

cooling component of the crystal by using inert gas jets. 

technique will be particularly useful for growing low cost, high 

quality, large diameter crystals for solar cell applications. 

The concept relies on regulating the convection 

This 

6. Develop the detailed modeling of the hydrodynamics of the melt. 

7 .  Develop a thermal stress model. 

This final report summarizes the work done during the period of in- 

vestigation (1/1/85 - 6/1/86) and shows how the various tasks listed 
above have been accomplished. 

It should be noted that the program duration was reduced to a year 

and a half instead of the originally planned time. All of the above 

quoted tasks could not have been accomplished if additional support was 

0 not obtained from the Electric Power Research Institute (EPRI)  under con- 

tract No. RP-8001-1. 
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11. CURRENT STATE-OF-THE-ART IN MODELING 

The modeling of Czochralski growth has been studied by many investi- 

gators based on various simplifying assumptions. The problem is complex 

due to the interaction of the hydrodynamics and heat transfer in the melt, 

the unknown position of the melt-crystal interface (which must be 

determined as part of the solution), meniscus shape of the melt at the 

melt-crystal-gas line of contact, and the effect of both direct and 

reflected radiation interactions among the various 'surfaces' in the 

enclosure. 

A. THERMAL MODELING 

Simplified versions of the combined problems of the temperature distri- 

bution in the melt and the crystal have been studied extensively in Japan 

by Kobayashi and Arizumi (1970, 1972) and Kobayashi (1981) and recently by 

Derby and Brown (1986) in the United States. Kobayashi and Arizumi (1972) 

assumed conduction to be the dominant mechanism for heat transport in both 

the crystal and the melt. In a separate study (Kobayashi and Arizumi, 

1970; Kobayashi, 1981) the flow pattern in the melt was also included in 

the model. A finite difference method was used for the solution of the 

model. 

interfaces due to the difficulties in handling nonplanar regions. 

more, a simplified radiation model was used in their work. 

This computational scheme is suitable only for nearly planar 

Further- 

In a recent paper Derby and Brown (1986) modeled the combined-problem 

assuming that the heat transfer in the melt occurs by conduction only. The 

radiation interaction between the various surfaces was not included in the 

model. These assumptions restrict the validity of the model. 

however, included the shape of the melt meniscus which was obtained by 

solution of the Laplace-Young equation. The crystal radius corresponding 

to a given pulling rate was determined as part of the solution. 

Their model, 

The solution 
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procedure was based on a finite element method coupled with a global 

Newton Raphson scheme for all the unknowns (temperature, interface shape, 

meniscus shape, crystal radius). 

rapid convergence, the method has limitations in that it cannot be readily 

adapted to more complex models for the melt and may ultimately require 

a supercomputer. Indeed, a supercomputer was used in their analysis 

(Derby and Brown, 1986). 

Although such a scheme is useful for 

Heat loss by radiation from the crystal side surface and heat received 

by the crystal by radiation from the exposed surface of the crucible play 

significant roles in the process, as shown by Kobayashi (1972) and Rea 

(1981). 

incl9ding the radiation interaction between the various surfaces present 

in the crystal growth apparatus was developed by Ramachandran and Dudukovi; 

(1985). 

culating the radiation heat loss was replaced by the more detailed Gebhart's 

model from the enclosure theory of radiation (Gebhart, 1961). The above 

discussion indicates that a complete analysis even for a conduction 

dominated model is not available. In particular, all the critical elements 

independently analyzed by various investigators need to be put together 

for a complete simulation. 

B. HYDRODYNAMICS 

A detailed model for the temperature distribution in the crystal 

In their work, a simple Stefan's model normally used for cal- 

The flow field in the melt is governed by the Navier-Stokes equation. 

These equations can be expressed in terms of the vorticity, stream function 

(9,~) formulation and the azimuthal velocity or in terms of the basic 

variables (three components of velocity and pressure). A number of studies 

have focused attention on the hydrodynamics of the melt and these are 

summarized in Table 1. The special features of these studies are indicated 

0 in Table 1 as follows: 

- 8 -  



a 
A. 

B. 

C. 

D1. 

E. 

F. 

G. 

H. 

The 

Gr 

ReC 

The 

RC 

8 

AT 

8 

V 

Radiation is Included 

Al. 

A 2 .  

Simple Stefan's Law to Surroundings at O°K 

Stefan's Law to Surroundings at T = Tamb (specified ambient 

temperature) 

Melt-Crystal Interface Shape Determined 

Unsteady Case Solved 

Axial Magnetic Field applied 

Oxygen Transfer Considered 

Thermocapillary Flow Considered 

Non-Axisymmetric, Three-Dimensional Simulation 

Microgravity 

dimensionless groups shown in Table 1 are defined as follows: 

- B g  AT b 3 2  / V  

= wsRc2/V 

= WcRc 2/  v 

following symbols and units are used: 

crucible radius, cm 

acceleration due to gravity, cm/s 

temperature difference (crucible wall and melting point), K 

volume expansivity , K-' 
kinematic viscosity, cm2/s 

crucible rotation rate, s 

crystal rotation rate, s-l 

2 

-1 

It is seen that although considerable information is available on the 

hydrodynamics, studies in the range of parameters of interest in silicon 

growth are rather limited. In addition, none of the studies shown in 

Table 1 solves the combined problem of the melt + crystal. 
essential for a quantitative model f o r  the Czochralski process. 

j 
I I 

Such a study is 

Kobayashi 
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and Arizumi (1970, 1981) were the only investigators who made some attempts 

to solve the combined problem but this was for a limited range of parameters. 
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111. MODEL DEVELOPMENT/COMPUTER ALGORITHM 

In this section an efficient computational scheme is presented for 

solving the case of conduction dominated heat-transfer in the melt. 

Temperature profiles in the melt and crystal, position and shape of the 

melt-crystal interface and the required crystal pull-rate are all deter- 

mined. The finite element method with triangular cells is applied 

separately to solve the heat transfer problem both in the crystal and the 

melt. The two systems are coupled through the energy balance at the melt- 

crystal interface. The complete problem is then solved in an iterative 

manner. 

updated along with the interface shape and the crystal pulling rate. 

detailed radiation model accounting f o r  both direct and reflected radiation 

is used to model the radiative heat exchanges in the system. 

should be readily extendable to treat the hydrodynamics of the melt without 

significant reprogramming. This approach will also be suitable for com- 

plete transient simulation of the crystal pulling process to predict the 

entire history of the growth process. 

parameters on interface shape and pulling rate is investigated in detail. 

The former is tied to crystal quality and the latter determines the puller 

At each iteration the crystal and melt temperature profiles are 

A 

This algorithm 

The effect of various process 

productivity. Thus, the present work updates the results of Kobayashi 

(1981) ; Derby and Brown (1986) ; Ramachandran and Dudukovic (19851, and 

provides a complete simulation for the conduction dominated model for the 

melt. A new computational scheme based on sequential modular simulation 

is also introduced thus providing easy replacement of the conduction 

dominated model for the melt with other more detailed models. 

The governing equations describing the heat transport in the me,t anc 

the crystal are farily well established and will be discussed briefly. 

model is based on the following assumptions. 

The 
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a 
I 

i. 

ii. 

iii. 

iv . 

Conduction is the dominant heat transfer mechanism in both the 

crystal and the melt. 

Pseudo-steady state is achieved with respect to temperature gradients, 

- i.e., the crystal is pulled at sufficiently low speed so that the 

gradients are not changing significantly at a given instant of 

time . 
Both direct and reflected radiation exchange occurs among all the 

exposed surfaces at various temperatures in the crystal puller 

enclosure. 

The melt-gas interface can be described by an approximate 

analytical solution (available in the literature). This includes 

the shape of the meniscus at the crystal-melt-gas line of contact. 

The differential equation describing the heat flow in the crystal is 

as follows: 

Here r is the radial position; z is the axial position measured from the 

bottom of the crucible; T is the temperature at position (r,z); ps is solid 

density; ks is solid thermal conductivity, 

and v is the pulling rate. 

is specific heat of the solid cPS 

The governing differential equation for the melt is: 

where k o is the thermal conductivity of the melt. The model definition 
k 

is complete once the 

for both crystal and 

boundary conditions are specified. 

melt, requires: 

Symmetry at r - 0, 

- 13 - 



On the cylindrical surface of the crystal conduction is balanced by 

radiation and convection losses: 0 

Here qR is the net heat loss by radiation for an element of the crystal 

surface per unit area, h is the convective heat transfer coefficient and 

Ta is the average temperature of the argon gas that surrounds the crystal. 

Assuming that the argon flow in the enclosure is laminar, the value of h 

is given by: 

h = a (T - Tal 114 

Here a is an empirical correlating constant. 

is zero and can be calculated for other cases using the correlations given 

The value of a in a vacuum 

(4) 

( 5 )  

in texts such as McAdams (1954). The complete solution of the heat transfer 

problem involving gaseous convection requires the simultaneous solution of 

the gas hydrodynamics in order to calculate precisely heat losses by con- 

vection. Such a calculation is not necessary since the convection con- 

tribution to heat loss is considerably less than the loss due to radiation. 

On the crystal top surface conduction is also balanced by radiation 

and convection losses: 

On the melt free surface the same condition holds: 

Here n is the outward normal on the melt free surface. 

The crucible surface is assumed to be at constant temperature: 

T = Tc , on the crucible surface 

- 14 - 



The crystal-melt interface I s  determined by the melting point isotherm: 

(9) T = Tm , on the melt-crystal interface 

On the crystal-melt interface the conduction flux from the melt and the 

energy released by solidification are balanced by conduction in the crystal. 

! Os Q k  + Qf 

where : 

i 

Here n refers to the outward normal from the melt at the interface, m 

is the slope of the crystal-melt interface and AH is the latent heat of 

fusion. The shape of the melt-gas meniscus is given by the Laplace-Young 

equation. e 
Here UST is the surface tension of the melt; A P  is the difference 

between densities of the fluid (melt) forming the meniscus and the ambient 

fluid (argon); g is the gravitational acceleration and z 2  is the vertical 

coordinate at the melt surface measured from the crucible bottom; R1 and 

R2 are the principle radii of curvature of the meniscus (which can be 

related to the first and second derivatives, with respect to radius, of 

the melt-gas interface position). In this work an approximate analytical 

equation proposed by Hurle (1983) is used to model the shape of the melt- 

gas meniscus. 

This analytical solution compares very well with the rigorous numerical 

(This equation is very lengthy and is not reproduced here). 
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solution of the Laplace-Young equation (Hurle, 1983). Both the analytical 

solution and the numerical solution require the contact angle at the 

melt-crystal interface to characterize the melt-gas interface shape. 

melt volume constraint introduced by Derby and Brown (1986) is expressed 

as : 

The 

R 
0 R 
! 2711: zl(r)dr + IRC 2nr z2(r)dr = Vm 

Here zl(r)  and z2(r) refer to the vertical coordinate of the melt-crystal 

and melt-gas interface, respectively; R and Rc are the crystal and the 

crucible radii. 

Equations (1) to (12) describe the complete model for the crystal and 

the melt necessary to calculate the tenperattire field in the crystal and 

the melt along with the interface shape and the crystal pulling rate. 

we review the method introduced by Ramachandran and Dudukovic (1985) for 

the calculation of radiation heat losses from any crystal or melt surface 

accounting for both direct and reflected radiation. 

A. ESTIMATION OF RADIATION HEAT LOSSES 

Next 

The radiation heat loss per unit area for a surface k at temperature Tk, 

can be calculated as (Gebhart, 1961): 

where 

m 

Gik = radiation factor representing the fraction of the radiation emitted 

by surface i which is'absorbed by surface k. 
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N 

Ei = emissivity of the i-th surface. 

Here, TeSk can be viewed as the effective temperature to which 

loses heat by radiation. 

= total number of radiating surfaces present in the system. 

the surface k 

As a simplified model, the radiation heat loss term can be calculated 

assuming that an element of crystal or melt loses heat only to the surround- 

ings (say wall of the enclosure). Then 

4 qR,k = ‘ka (Tk - Teff4) 
where 

Teff = an effective temperature of the surroundings to which radiation heat 

loss takes place. (This can also be treated as an assumed model 

parameter). 

This simplified model (Equation 15) is referred to as the Stefan’s model 

while the general model (Equation 13), which includes the detailed radiation 

exchange, is referred to as the Gebhart’s model. a 
The procedure for calculating the G-factors (Gik; i, k = 1, 2,. .., N, 

where N is total number of radiating surfaces present in the system) is 

described in standard textbooks on radiation, and only the final set of 

equations will be presented here (see for example Gebhart, 1961; Siegal 

and Howell, 1972). For any surface k these equations are: 

Where F 

equations for Gik; i = 1, 2,...,N, can be solved by Gaussian elimination. 

is the view factor from surface i to j. The above set of linear ij 

Repeating the calculations for all the surfaces by changing k, we obtain 

(15) 

all the radiation factors. These equations are based on the assumption a 
- 17 - 



th t the reflectivity of any surface k is equal to (l’ek), which is valid 

for opaque gray surfaces. 

In our computation the entire enclosure containing the CZ puller 

apparatus is divided into 

assumed to be at uniform temperature for the purpose of calculation of 

the G-factors. 

1. NT surfaces for the crystal top = Number of finite element divisions 

surf-aces as indicated below, and each surface is 

in the crystal in r direction. 

2. NC surfaces for the crystal side = Number of finite element divisions 

in the crystal in the z direction. 

3.  NM surfaces for the melt surface = Number of finite element divisions 

in the melt in the r direction. 

4. One surface for the crucible wall. 

5 .  One surface for the enclosing walls. 

Total number of surfaces N = NT + NC + NM + 2 

The calculation procedure for the view factor matrix F(i,j): 

i, j = 1, 2 ,  ..., N, is straightforward when the melt free surface is 
assumed to be flat. The closed form expressions for all the required view 

factors are available in the literature (Siegal and Howell, 1972; Rea, 

1975; Minnig, 1979; Howell, 1982). The estimation of the view factors 

for the curved melt free surface (meniscus) is accomplished by approximating 

the melt free surface near the crystal by a straight line with the correct 

slope as required by contact angle consideration. 

significant errors since the curvature is rather steep and confined to a 

very small region near the crystal edge. 

particularly for silicon since the three phase contact angle for silicon is 

very small (Brown and Ettouney, 1983). The view factors from the various 

surfaces to other surfaces can then be calculated in terms of known view 

This does not cause 

This approximation is valid 
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factors by applying suitable view factor algebra. 

for short crystals during necking and shoulder growth have been reported 

for the first time by our group. Table 2 summarizes the entire calculations 

of the view factors needed for the CZ puller. 

Radiation view factors 

The above method for calculation of radiation interchange is compu- 

tationally equivalent to that introduced by Rea (1981) in his one-dimensional 

model for the crystal. This has been proved in the book by Siegal and 

Howell (1972). However, the current procedure is more suitable in iterative 

calculations and also when interactions among large number of surfaces needs 

to be considered. (The G-factors need to be calculated only once at the 

start of the iteration if the slight changes in G-factors due to the 

temperature dependence of emissivity are ignored). 

B. SOLUTION PROCEDURE 

A sequential modular type of approach is used for the calculation of a the thermal field in the crystal and melt, the crystal-melt interface shape, 

the melt meniscus, and the crystal pulling rate for a fixed crystal radius. 

The shape of the melt-gas meniscus is calculated in the beginning using 

the analytical solution of Hurle (1983) for the desired crystal radius. The 

Galerkin finite element method with triangular basic cells is applied 

separately to the Laplace Equations (1) and (2) for the crystal and the melt 

along with the appropriate boundary conditions. A typical finite element 

mesh used for the system is shown in Figure 3. The isotherm boundary 

condition defined by Equation (9) is used for the finite element formulation 

of Equations (1) and (2). At each iteration Equations (9) and (12) along 

with the known shape of the melt meniscus (from Equation (11)) are used to 

update the crystal-melt interface and the crystal pulling rate. 

cedure for updating the crystal-melt interface is discussed in Appendix 1. 

The pro- 
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Table 2 

View Factor Calcu la t ion  i n  a Czochralski P u l l e r  

VIEW FACTOR REFERENCES 

I. Long Crys t a l  (Crys t a l  Top is Outside 
t h e  Crucible)  wi th  F l a t  Melt Surface 

1. C r y s t a l  t o  Melt 

2. C r y s t a l  t o  Crucible  

3. Melt t o  Crucib le  

4. Crucib le  t o  Cruc ib le  

11. Short  Crys t a l  (Crys t a l  Top is Inside 
the  Crucible)  wi th  F l a t  Melt Surface 

1. C r y s t a l  t o  Melt 

2. C r y s t a l  t o  Cruc ib le  

3. Melt t o  Cruc ib le  

4. Crucib le  t o  Crucib le  

111. Modif ica t ions  f o r  Curved Melt Surface 

1. C r y s t a l  t o  Melt 

2. C r y s t a l  t o  Cruc ib le  

3. Melt t o  Crucib le  

4. Crucib le  t o  Crucib le  

5 .  Melt t o  Melt 

I V .  Neck Growth 

V. S h o u l d e r / I n i t i a l  Bulk Growth 

- 20 - 

S i e g a l  and Howell (1972), 
Rea (1975) 

Rea (1975) 

Minning (1979) 

Howell (1982) 

S i e g a l  and Howell (1972), 
Rea (1975) 

Rea (1975) 

S r ivas t ava  e t .  a l .  (1986) 

S r ivas t ava  e t .  a l .  (1986) 

S r ivas t ava  e t .  a l .  (1986) 

Rea (1975) 

S t i v a s t a v a  e t .  a l .  (1986) 

S r ivas t ava  e t .  a l .  (1986) 

S r ivas t ava  e t .  a l .  (1986) 



0 2 4 6 a 10 
R CCM) 

Figure 3 .  A Typical Finite Element Mesh with Triangular Basic 
Cel ls  for Crystal + Melt. 

. .  . .  
c .  
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In brief, the overall simulation procedure is as follows: 

1. Calculate the melt meniscus shape. a 
2. Assume a crystal-melt interface shape and calculate its location 

(z-coordinate) from Equation (12). 

Calculate view factors for all the surfaces to account for slight 

changes resulting from the volume constraint (every 5 iterations). 

4. Calculate G-factors for all the surfaces to account for the effect 

3. 

of temperature on emissivity (every 5 iterations). 

Calculate Te,k for all the surfaces from Equation (14). 5. 

6. Do one iteration of the crystal temperature profile calculations. 

7. Do one iteration of the melt temperature profile calculations. 

8. Calculate QSi and Qki at the interface for each node from Equations 

(loa, b). 

9. At this stage Equation (10) is not satisfied and therefore the pulling 

rate is updated and the interface is deformed such that energy balance 

Equation (10) is satisfied at all nodes. The procedure for doing this 

is discussed in Appendix 1. 

0 

10. Continue iteration (steps 3 to 9) until the temperature profiles, the 

interface shape and the pulling rate converge within a specified 

tolerance. 

The delayed application of the Wegstein accelerator (after every 5 

iterations) to the interface shape and the pulling rate leads to rapid 

convergence of the problem. 

for multivariable problems (Westerberg and Motard, 1979). Most of the 

simulations using this approach converged within 10 to 15 iterations. 

approach also enables the easy replacement of the conduction dominated model 

of the melt with a more detailed model which Includes other heat transport 

The Wegstein method is a modified secant method 

This 
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effects, such as natural and forced convection as well as thermocapillary 

flow and the effect of a magnetic field. 

The computation scheme proposed by Derby and Brown (1986) predicts 

It is often the crystal diameter for a specified crystal pulling rate. 

desirable to simulate the complete crystal growth cycle and determine the 

necessary crystal pulling rate adjustments as the growth takes place 

in order to produce an ingot of a desired diameter. 

scheme (1986) is not convenient for such simulation of the complete 

Derby's and Brown's 

transient behavior of the full growth cycle of the CZ process, since it 

solves for the crystal radius and keeps the pulling rate fixed. 

disadvantage of calculating the crystal radius at a fixed pulling rate is 

The other 

that the Laplace-Young equation describing the melt meniscus has to be 

solved simultaneously, at each iteration, along with all other model 

equations since the meniscus shape is a function of the crystal diameter. 

On the other hand, if the crystal diameter is fixed and the pulling rate 

estimated (as in our case) then one needs to solve the meniscus equation 

only once in the beginning of the simulation procedure to predict the 

shape of the meniscus. 
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IV. PARAMETRIC STUDIES 

One of the objectives of this work was to study the effect of various 

parameters of the CZ process on the crystal-melt interface and on the 

pulling rate (the production rate). 

The physical properties such as emissivity, melting point, latent heat, 

thermal conductivity, etc., are set beforehand. The standard values of 

these properties used for simulation are listed in Table 3. 

parameters for the conduction dominated model are the following: 

of convective heat transfer from the crystal and melt to the gas, crystal 

radius, exposed crucible height, melt volume, and crucible temperature. 

As discussed earlier, the growth rate is not explicitly specified, because 

it is uniquely determined by the energy balance equation at the interface. 

The effects of process parameters on the interface shape and the pulling rare 

These results will be presented now. 

The process 

coefficient 

were examined, because the interface shape is primarily controlled by these 

factors. 

isolate its effect on the interface shape. 

parameters are listed in the Table 4. 

of the interface shape is defined by the following parameter: 

Only one process parameter is varied at a time in order to 

The values of the process 

the extent of convexity or concavity 

A r  = z1 - znr = z  ( r - 0 ) - z ( r = R )  

This parameter can be viewed as the measure of the deivation of the inter- 

face shape from planarity as follows: 

For Ar < 0 , the interface is convex and the crystal penetrates into 

the melt. 

For Ar > 0 , the interface is concave and the melt penetrates into 

the crystal. 

- 24 - 
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TABLE 3 

Values of Physical Properties Used for the Simulations 

Melting Point 

Latent Hea t 

Emissivity 

Crystal 

Melt 

C ruc ib l e  

Wall 

Thermal Conductivity 

Crystal 

Melt 

Specific Beat 

Crys t a1 

Melt 

Density 

Crystal 

Melt 

Contact Angle 

Surface Tension 

1693.15 K 

2160.0 J/ cm 3 

" s  

0.64 if T 1000 K 

0.9016 - 2.616~10~~T if T > 1000 K 

0.30 

0.59 

1.0 

-7 2 
0.9889240 - 9.0286595~10-~ T + 2.889~10 T ,  W/cm K 

0.64 W / c m  K 

1.0 J / g  K 

1.0 J /g  K 

2.33 g/cm3 
3 2.42 glcm 

11. 

720 dyntlcm 
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TABLE 4 

Values of Process Parameters Used for the Simulations 

Coefficient of convective heat transfer 1.66 x (AT)1l4 W/cm2 K 

Crystal radius 

Crystal length 

Crucible radius 

Total crucible he,,..t 

Melt volume 

Crucible temperature 

Wall area 

Wall temperature 

Average argon temperature 

Nozzle diameter a 
Aspect ratio of the jet (d/D) 

- 26 - 

3 to 9 cm 

30 cm 

12 to 18 cm 

16 cm - 25 cm 
4524 cm3 
6000 - 20,000 cm3 
(for Eqs. (31) & (37)) 

1700 - 1900 K 
1500 cm2 
30,000 cm2 (for Eqs. (31) & (37)) 

300 K 

500 K 

0.1 cm 

60 



In the following discussion the words 'more concave' also mean 'less 

convex'. Similarly less concave also implies more convex. All the 

simulations were performed using the detailed radiation model except 

where mentioned. 

A. EFFECT OF MELT MENISCUS 

To examine the effect of the melt meniscus in detail, the crystal and 

melt temperature profiles are simulated for both a flat and a curved melt 

surface for a 12 cm diameter crystal. The flat melt surface results from 

assuming a contact angle of 90" while the curved melt surface was 

generated using a contact angle of 11'. 

same. The temperature profiles (isotherms) in the crystal and the melt 

are shown in Figures 4 and 5. 

All other parameters are kept the 

These figures reveal that the incorporation of the melt meniscus shape 

into the model leads to the increase in both pulling rate (from 4.1 cm/hr 

for a flat melt surface to 7.5 cm/hr for the curved melt surface) and to 

increased concavity of the interface. In fact, for the test case, the 

interface for the flat melt free surface is convex (less concave) (Figure 4) 

in contrast to a more concave interface when the melt free surface forms 

a meniscus (Figure 5). 

1. 

increase in the melt depth below the crystal. 

order of 0.5 cm for this case. As explained by Kobayashi (1981), such an 

increase in melt depth leads to an increase in the pulling rate as well 

as to increased concavity of the interface. 

in the axial heat transfer from the melt to the interface. This effect is 

also observed experimentally (Billig, 1955; Mil'Vidskii and Gotavin, 1961). 

2. The formation of the melt meniscus leads to an increase in the surface 

area of the melt free surface, particularly near the crystal-melt interface. 

0 

This is due to the following reasons: 

Incorporation of the melt meniscus shape into the model leads to an 

The increase I s  of the 

This is caused by the reduction 

0 

.m 
*' 

- 
. -i 
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Figure 4. Temperature Field in the Crystal and Melt. 

(Flat Melt - Gas Interface). 
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a me of this area is almos 'vertical' (especially for a low contact angle 

of 11" such as silicon). 

vection and radiation) from the melt to the surroundings near the melt- 

crystal interface and thus reduces the net radial heat transfer from the 

melt to the interface. 

increased concavity of the interface. 

allow for any radial heat transfer from the melt to the surroundings. 

'Phis allows for radial heat transfer (both con- 

This leads to an increase In the pulling rate and 

The flat melt free surface does not 

Similar behavior of the pulling rate and the interface shape is 

observed for various crucible temperatures (see Figures 6 and 7). 

and Derby (1986) also examined the effect of the melt meniscus on the inter- 

face shape and crystal radius. 

as well as increase in concavity of the interface due to che melt meniscus 

at a fixed pulling rate. 

Brown 

They reported an increase in crystal radius 

This is equivalent to an increase in pulling rate e 
at a fixed crystal diameter as shown here. 

has a considerable effect on the heat transfer near the interface especially 

for silicon due t o  the small contact angle. 

a flat melt free surface leads to erroneous results. 

B .  EFFECT OF CRUCIBLE TEMPERATURE 

It appears that the melt meniscus 

Thus, the simplifying use of 

The interface shape is shown as a function of crucible temperature for 

both flat and curved melt-free surfaces in Figures 6 and 7, respectively. 

To avoid clustering of the results the y axis is not the same for curves 

1 to 5. 

the parameter H in these figures. 

curve applies to the other figures as well and lends clarity to the pre- 

sentation of the figure. 

the interface shape changes from concave to convex as the crucible temperature 

is increased. This I s  due to the following two factors: 

The proper y axis for each of the various cases is defined by 

This shifting of the y axis for each 

In both cases, for flat and curved meniscus, 
, 
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9 
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Tcru V Ar H No. 
K (cm/hr) (cm) (cm) 
1770 10.3 0.16 t + 0.8 1 

2 1780 7.4 -0.035 z + 0.6 
3 1790 4.1 -0.268 z + 0.4 
4 1800 0.7 -0.487 t + 0.2 
5 1810 -3.5 -0.796 z + 0.0 

I I I I I 

2 4 6 0 IO I 

Radial Oistonce (cm) 

Figure 6. Effect of Crucible Temperature on Interface 
Shape. 
(Flat Melt, Gas Interface). 
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No. Tcru 

1 1770 
2 1780 
3 1790 
4 1800 
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1. 

transfer from the melt to the interface G., to an increase in isotherm 

A higher crucible temperature leads to an increase in the radial heat 

slope. 

2. 

portion near 

in the vicinity of the interface becomes mainly axial. 

significant radiation interchange between the exposed portion of the 

crucible wall and the lower part of the crystal. These two factors force 

the crystal to penetrate into the melt and lead to an increasingly convex 

interface as the crucible temperature increases. In addition, the increased 

crucible temperature requires a reduction of the pulling rate if the crystal 

diameter is to remain constant, as shown in Figures 6 and 7. 

ing growth rate is again caused by the two factors mentioned above. 

Negative growth rate, implying the remelting of the crystal for a flat 

melt surface (Figure 6) at a high crucible temperature (1810 K) is pre- 

dicted. In this case, the heat transfer from the melt to the interface 

overcomes the axial heat dissipation from the interface to the crystal, 

leading to the remelting of the crystal. 

excessive radial heat transfer from the melt to the interface takes place 

and at the same time radiative heat losses from the crystal portion in the 

vicinity of the interface are significantly reduced due to the radiative 

exchange with the exposed crucible wall. 

this crucible temperature (1810 K) when the melt interface (meniscus), is 

curved as shown in Figure 7. The thin layer of the melt at the meniscus 

allows sufficient radial heat transfer from the melt to the surroundings 

SO that no remelting occurs. 

for remelting. 

At a higher crucible temperature radiative heat losses from the crystal 

the interface are decreased, and heat transfer in the crystal 

This is due to the 

The diminish- 

At high crucible temperatures, 

Remelting does not occur at 

Higher crucible temperatures would be required 

The effect of crucible temperature OR the interface shape 

-. 

.a 
I..' 

-_-- . 
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can also be explained qualitatively on the basis of the dimensionless 

group J, introduced in the paper by Ramachandran and Dudukovi; (1985). 

This parameter represents the dimensionless heat flux to the interface 

and can be defined for the present problem as: 

a 

Ramachandran and Dudukovi; (1985) showed that any decrease in parameter 

J, tends to make the interface more convex. An increase in crucible 

temperature increases the first term of the RHS of Equation (18), while 

the simultaneous decrease in the pulling rate necessary to keep the same 

diameter decreases the second term. The result of these two opposing 

effects is a net decrease in the parameter J, with the increasing crucible a temperature. This makes the interface more convex as shown in Figures 

6 and 7. 

C. EFFECT OF CRYSTAL RADIUS 

Interface shapes for various crystal radii at the crucible 

temperature of 1800 K are shown in Figure 8. 

increases first with increasing crystal radius up to a radius of 3.0 cm, 

and then rapidly decreases as the crystal radius approaches the crucible 

radius. 

highly convex, because the radial heat transfer from the melt to the 

interface becomes significant. In addition, the view factor from the 

crucible wall to the crystal increases significantly 

is used in the simulations). The result is similar to the effect of an 

increased crucible temperature, namaly, the transition from increasing 

concavity to increasing convexity of the Interface also depends on the 

The degree of concavity 

For a larger crystal radius (7.5 cm), the interface shape I s  

(since crucible radius 
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crucible temperature. For high crucible temperatures, the transition will 

occur at a smaller crystal radius since the radial heat transfer rapidly 

increases with the increasing crucible temperature. 

The increasing concavity of the Interface shape, up to the radius 

of 3.0 cm, can be explained on the basis of the increasing Biot number. 

The earlier work of Wilcox and Duty (1966) showed that the interface shape 

becomes more concave as the Biot number is increased provided the pull 

rate is also simultaneously adjusted In order to keep a constant radius. 

However, for larger crystal radii, the Biot number is no longer a 

measure of the interface shape, since the radial gradients in the melt 

become significant, and the crystal portion near the interface starts 

absorbing radiative heat from the exposed crucible wall. Experimentally, 

as the crystal radius is increased, the interface shape becomes less concave 

and sometimes changes from concave to convex (Inoue, 1976; Brice, 1973). 

This is in agreement with the theoretical predictions. 

D. EFFECT OF EXPOSED CRUCIBLE WALL 

The exposed crucible wall plays an important role in the crystal growth 

process in a batch CZ puller. 

increases as the growth proceeds, since more and more area of the crucible 

wall is exposed to the crystal as the melt level drops. 

exposed crucible wall reduces the crystal capacity to lose heat by radiation 

in the vicinity of the interface. 

defining the radiation heat transfer efficiency of the crystal side surface 

as follows: 

The effect of the crucible wall continuously 

Basically the 

This phenomenon is best studied by 

actual heat exchange by radiation 
maximum possible heat loss  by radiation efficiency (II) = 

UE (T4 - Ti) 
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where Te is the effective temperature f o r  radiative heat loss at any 

position of the crystal surface as defined.by Equation (14). 

In Figure 9 the radiation efficiency of the crystal side surface is 

shown for various heights of the exposed crucible wall. 

efficiency rapidly becomes smaller as the crucible wall exposed height, 

hc, increases. 

over a region close to the interface. 

receiving heat by radiation rather than losing heat. 

hampers the growth rate of the crystal. 

leads to decreasing growth rate of the crystal and increasing convexity of 

the interface. The results obtained here are similar to the results of 

Arizumi and Kobayashi (1981). 

E. COMPARISON WITH THE SIMPLE RADIATION MODEL 

The radiation 

For hc greater than 5.5 cm the efficiency becomes negative 

In this region the crystal is 

This significantly 

As expected an increase in h, 

The results obtained by using the detailed radiation model, (Gebhart's 

model) incorporating direct and reflected radiation, were compared with 

the simple radiation model (Stefan's model). The crystal surface 

temperatures obtained for the Gebhart's model and for the Stefan's model 

for several assumed effective radiative temperatures in the heat loss term 

from the crystal (see Equation 15)) are shown in Figure 10. An attempt 

was made to match the calculated crystal temperature profile based on 

Gebhart's method by the appropriate choice of the effective temperature 

in the simple Stefan's model. The entire temperature profile cannot be 

matched using a single value for the effective temperature in the simple 

model. Low values of effective temperatures (such as 500 K) can match the 

temperature in the top region; however, a very high crystal growth rate as 

well as a highly concave interface shape is predicted for this situation. 

The match near the interface is also very poor. On the other hand, high 
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effective temperatures (such as 1400 K) can match the profile near the 

interface and predict the growth rates to a reasonable extent, but higher 

temperatures are predicted in the top region. 

possible to match the interface shape. 

creasing effective temperature from the crystal top to the bottom should 

be used to predict the thermal behavior of the crystal if a simple radiation 

model is to be used. 

abilities and the detailed model, which includes all the radiation 

interactions, is to be reconmended for correlating experimental data. 

In either case, it is not 

It appears that a linearly in- 

In any case, such an approach loses its predictive 

The details of this work are also presented in our recent publication 

(Srivastava, et. al., 1985). 
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V. DEVELOPMENT OF SIMPLE MODELS 

In addition to the detailed modeling studies there is considerable 

incentive to develop a simple correlating equation for predicting the 

pulling rate and the interface shape. 

hydrodynamic and heat transfer problems including modeling are underway, 

very little attention has been focused on developing some simple models or 

empirically correlating the results in terms of important process para- 

meters of the system. 

Although several studies of the 

It is well established that the thermal environment changes continuous- 

ly as the crystal growth takes place. This is due to the effects of the 

diminishing melt level and the increasing height of the exposed crucible 

wall. 

justed to grow crystals of uniform diameter with a nearly planar interface. 

The detailed models coupled with the finite element solution technique 

cannot readily be used on-line with the growth process to predict the 

changes in the pulling rate and the crucible temperature required for strict 

control of crystal diameter and interface shape, since these models are 

fairly complex and require an excessive amount of computing time due to 

a convergence problem. Hence, the development of a simple model to repre- 

sent the system is desireable. 

a simple mathematical model, which describes the different crystal growth 

phases including neck-in, shoulder growth and constant diameter bulk growth. 

This model basically correlates the crystal diameter with the pulling rate 

and the crucible temperature using two parameters. Experimentally, they 

observed that the crystal radius, R, is inversely proportional to the crystal 

pulling rate, v, and the temperature difference AT of the system. Here 

AT is the difference between the crucible wall temperature, Tc, and the 

Thus, the pulling rate and the crucible temperature need to be ad- 

Kim et. al. (1983) at IBM have proposed 

=-. 
-c 
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melting point, Tm, of the crystal. On this b 

following relationship: 

1 B 
v + A + =  R = -  

sis they propos d th 

where A and B are constants determined from the experimental data. These 

authors were able to match this model with the actual operating data. 

However, this model has limited utility because it is based on a single 

set of operating conditions and does not account for the decreasing melt 

level and the increasing height of the crucible wall during the growth 

cycle, both of which have significant influence on the growth rate and the 

interface shape. Further, no model or correlation was proposed for the 

prediction of the interface shape. 

The objective of this part of the study was to develop a simple model, 

based on semi-quantitative arguments, which can predict both the pulling 

rate and the interface shape as a function of the important process variables 

of the system. The development of the model is based on first principles 

of heat transfer and energy balance considerations. 

simple model is compared with results obtained from the finite element 

solution of the detailed model described in Section 111 and in the reference 

(Srivastava et. al., 1985b). 

The accuracy of the 

In the following sections, first a simple model is proposed and 

tested with a large set of data over a wide range of operating conditions 

encountered during the growth process. 

account for various other effects in the system. The operating conditions 

used for this study are given in Tables 3 and 4. Although the form of the 

equations developed in this study are general, the empirical constants 

The model is further updated to 

evaluated are applicable only to the data of Tables 3 and 4. e .  - 42 - 



A. MODEL FOR GROWTH RATE 

1. Equation Development 

The solidification of the melt to form the crystal takes place at 

the crystal-melt interface. Therefore, the growth rate of the crystal 

is governed by the heat balance consideration at the interface. 

balance at the interface is as follows: 

The heat 

dm 
dt AH - Qc - Qm 

where 

2 dm/dt = rate of solidification of melt at the interface a vR 

= rate of heat loss from the interface 

= rate of heat loss from the crystal side surface CC R 

= rate of heat input to the interface from the melt a R2AT 

Hence, the following relationship I s  obtained between the V, R and AT: 

QC 

Qm 

This relationship implies that the pulling rate is inversely proportional 

to the crystal radius, R, and directly proportional to AT = Tc - Tm. 
This is similar to the experimental results of Kim et. al., (1983). Further, 

when AT - 0, the melt is maintained uniform at its melting point temperature 
and under these conditions the maximum pulling rate is obtained. 

Equation (22a) neglects the heat losses from the crystal top surface and 

the melt free surface. 

surface, Qc, is assumed to be proportional to R. 

crystal surface temperature is weakly dependent on the crystal radius. 

Further, the heat loss from the crystal side 

This implies that the 
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Based on a one-dimensional model of a long crystal, Billig (1955) showed 

that the temperature gradient at the interface is inversely proportional 

to the square root of crystal radius. Therefore, according to Billig we 

have 

Qc a nR 2 (-& dT and - dT aR112 so that QcaR 312 
dz 

This analysis implies that the crystal surface temperature increases 

in proportion to the square root of the crystal radius. 

(22a) has the following form if the analysis of Billig is used. 

Then, Equation 

A v - - BAT 
Jfi 

and the maximum pulling rate is 

A = -  v max JR 

0 The analysis of Billig thus implies that the growth rate is inversely 

proportional to the square root of the crystal radius. 

whether Equation (22a) or (23aj provides a suicabie starting poiiic frr 

correlating experimental data for CZ growth. It will now be shown by com- 

parison with a detailed model that Equation (22a) provides a more suitable 

The question is 

model. 

on radius as predicted by Kim et. al. (1983) although the actual model 

equations are different. 

2. Verification of the Model 

It may also be noted that Equation (22a) provides the same dependency 

(Compare Equation (20) and (22a)). 

The simple models described by Equations (22a) and (234 are now 

compared with the results of the detailed model to check their accuracy. 

For this purpose the simulations were carried out over a wide range of 

crystal radii (3 to 9 cm) and crucible temperatures (1760 to 1800 K). 

The crucible radius was kept constant at 12 cm. 0 
- 44 - 



Figure 11 shows the variation in pulling rate with changes in 

crucible temperature at various crystal radii. As expected, the pulling 

rate varies linearly with AT at all the crystal radii. The accuracy of 

the linear approximation is also given in Figure 11 for all the crystal 

radii. Therefore, at a constant crystal radius 

- BAT (244 Vmax 
am 

Here vmax is the value of the maximum pulling rate and B is the correspond- 

ing constant in Equation (22a) or (23a). Further, note from the tabular 

inset in Figure 11 that B varies considerably with the crystal radius. The 

variation of vmX and B with respect to the crystal radius R is discussed 

next in order to complete the model equation. 

First, as required by Equation (225) and (23b), respectively, vmax 

is fitted with respect to 1/R and l/fi , to determine the constant A. 

The results are given in Figure 12. 

fits the data much better than the relationship of Equation (23b). 

The relationship of Equation (22b) 

The 

maximum deviation in the pulling rate is only 5 cm/hr for Equation (22b) 

compared to the maximum deviation of 21 cm/hr for Equation (23b). Also 

the value of the root mean square deviation (variance) is much lower when 

the data is fitted with respect to 1/R. 

clude that the pulling rate is inversely proportional to the crystal radius. 

Based on this analysis, we con- 

Similar conclusions have been reported earlier by Derby and Brown (1986); 

and Derby et. al. (1985). We, therefore, use Equation (22a) for further 

discussion in this report. 

A new feature of the extensive comparison of the simple model and the 

detailed numerical solution is the finding that constant 

crystal radius. Figure 12 gives the variation of B with 

B depends on 

R. The 

-. 

-: 
-- 
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dependency of B on R can be fitted with the following form (see Figure 

12): 

Therefore, Equation (22a) is reduced to the following form: 

v = - - - -  A BIAT B2AT R R  

Equation (25) can be explained on the basis of heat transfer from the 

exposed portion of the crucible wall to the crystal. 

the earlier studies of Kobayashi and Arizumi (1972) and Srivastava et. a 

As established by 

(1985), the crucible wall plays the role of an after heater and impairs 

the heat losing capacity of the crystal. In our simulations, the height 

of the exposed portion of the crucible wall, hc, was kept constant at 

6 cm. 

to be proportional to AT (the difference between the crucible temperature 

and the melting point of the crystal) and to the radius of the crystal. 

The net heat loss from the crystal side surface will then be 

Heat gained by the crystal fromthe crucible wall can be assumed 

a 

Qca (R - BRAT) 
where 6 is a numerical constant which includes physical properties, 

and other design parameters. 

the heat loss from the crystal to the surroundings and the second term 

accounts for the heat received by the crystal from the hot crucible 

wall. 

The f i r s t  term on the right hand side describes 

The above form of Qc can be shown to yield a relationship for the 

pulling rate of the form of Equation (25). 

B2 were then re-estimated simultaneously by a least-squares technique 

using the entire set of data. 

The parameters A, B1 and 

The values obtained are: 
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2 A * 252 cm2/hr; B1 = 1.036 cm /hr/K; B2 = 0.188 cm/hr/K 

3. Effects of Crucible Wall and Melt Level 

The model developed up to this point neglects the changes in the 

melt level and in the exposed height of the crucible wall during the 

growth. The model is modified as follows to include these effects. 

The crystal growth in the Czochralski process takes place in the 

batch mode. Therefore, as the crystal grows the melt level drops con- 

tinuously and correspondingly the height of the exposed portion of the 

crucible wall increases. 

axial heat transfer from the melt to the interface and at the same time 

the increasing height of the crucible wall impairs the ability of the 

crystal to lose heat, since 

ed by the crucible wall. 

provides for a larger heat transfer area. 

creasing crystal length on the pulling rate and the interface shape is small, 

(Kobayashi, 1981; Srivastava et. al., 1985), since major heat transfer 

activity takes place near the interface. Therefore, the net effect of 

decreasing melt level, coupled with the increasing height of the exposed 

crucible wall, is the reduction in the growth rate. Therefore, if the 

crystal is being grown at constant pulling rate the crucible temperature 

needs to be lowered progressively to offset the effects of the depleting 

melt level and increasing height of the exposed crucible wall. 

the growth rate is balanced with the pulling rate and the crystal diameter 

can be kept constant. 

in order to incorporate these effects. 

The decreasing melt level results in increasing 

now a larger section of the crystal is surround- 

On the other hand, the increasing crystal length 

However, the effect of in- 

Then, 

A few modifications of Equation (25) are proposed 

The variation in the pulling rate with the height of the exposed 

portion of the crucible wall at constant melt level is presented in 
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Figure 13. The relationship between the pulling rate and hc is linear. 

a * h i s  linear relationship has also been reported by Kobayashi (1975). 

This is because the heat received by the crystal can be considered to 

be proportional to RhcAT. 

which is surrounded by the crucible wall at temperature T,. 

the net heat loss  from the crystal is 

Note that hc is also the length of the crystal 

Therefore, 

Qc a (R - B'Rh,AT) 
and Equation (25) can be updated to include the effects of the exposed 

crucible wall. 

Figure 13 also shows the required changes in the pull rate with 

decreasing melt level as predicted by the rigorous model. 

meters are kept constant to isolate melt level effects on the pulling rate. 

In Figure 13, at high melt level (initial growth period) the effect on the 

pulling rate is small, however, at lower values of the melt level the 

growth rate drops rapidly with the diminishing melt level. 

of v with respect to h can be approximated by the following equation: 

Other para- 

This variation 

c2 v = c l - -  h 

Equation (27) fits well the data in Figure 13. 

(27) describes the heat transfer from the melt. 

of heat transfer from the melt to the interface can be considered to be 

inversely proportional to the melt level, h. 

conduction theory. 

The second term in Equation 

It appears that the rate 

This I s  consistent with heat 

In order to develop a simple model which is valid over the entire 
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growth cycle, the influence of the melt level (or melt volume) and the 

effect of the height of the exposed crucible wall were compared. This 

should determine which effect is the dominant one. In the first set of 

computations hc was arbitrarily kept constant at 6 cm regardless of the 

melt volume. 

changes in the pulling rate as shown by the dotted lines in Figure 14. 

In the second set of computations the height of the exposed crucible wall 

was changed simultaneously with the melt volume as required by the mass 

balance shown below. 

The variation of the melt volume did not produce significant 

2 (VC - vm> 1 hc - 
TI Rc 

Here Vc is the volume of the crucible and Rc is the radius of the 

crucible. These results are shown as solid lines in Figure 14. It is 

evident that the effect of the melt level can be neglected in developing 

a simple model and only the effect of the exposed crucible wall height 

needs to be included. It is, however, more convenient to express 

Equation (26) in terms of melt volume. 

0 

For a fixed crystal radius this is reduced to the form below: 

v - al + a2VmAT - a3AT 
It should be emphasized that in Equation (30) the term Vm really 

represents the effect of the exposed portion of the crucible wall and 

not the direct effect of the changing melt volume. 

The correlating equation, given by Equation (30), was fitted to the 
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simulated data and a satisfactory agreement was obtained with a root-mean- 

square error in the pulling rate of 2 0.37 cm/hr. Further, it was found 

that the accuracy of the model could be increased considerably by adding 

one more term to the equation. 

be linearly dependent on h,, which means that a1 can be expressed as 

a linear function of Vm (due to Equation (29)). 

equation is now defined in the following manner: 

For this improvement, we assume "1 to 

Therefore, the correlating 

v = all + a2* Vm + a3* VmAT - a4*AT 
The justification for including a linear dependence on h, for the term 

al is as follows. 

to the melting point and we are in the maximum pulling rate situation. 

Even in this case the pulling rate should depend on the height of the 

For AT * 0 the melt is at a uniform temperature close 

exposed crucible walls and therefore it is proper to include a linear 

dependence of a1 on h, (or on V,). a Equation (31) was found to give a 

better fit to the data than Equation (30) with a root mean square error of 

8.62 x cmlhr. The following values of parameters were obtained: 

al' = 23.713 cm/hr 

a2* = 2.927 cm/hr L 

a3' = 

ab' = 0.3985 cm/hr K 

4.174 x 10-3 cm/hr K L 

The model can now be used to simulate a complete growth cycle and 

to adjust the operating policy. 

rate are related by the following relationship: 

The crystal length, melt volume and pull 
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B. MODEL FOR THE INTERFACE SHAPE 

1. General Discussion 

For the purpose of developing a simple model which can predict both 

the nature (convex or concave) and the magnitude (extent of convexity or 

concavity) of the crystal-melt interface shape, a parameter Ar is defined 

which measures the deviation of the interface from planarity. 

A r  = z (r=O) - z (r=R) 

= z (center) - z (edge) 

The sign of Ar indicates the nature of the interface. 

for Ar means that the interface is convex and a positive sign means that 

the interface is concave. 

concavity or convexity of the interface. 

A negative sign 

The magnitude of Ar measures the extent of 

The equation for the parabolic 

.2 shaped interface is given by zI = A r  - ?I* 

The interface shape, Ar, is plotted in Figure 15 as a function of 

the crystal radius for various crucible temperatures. At a constant 

crucible temperature, as the crystal radius increases, the concavity of 

the interface increases first and then starts decreasing as the crystal 

radius approaches the crucible radius. Similar results were also obtained 

by Kobayashi (1981). 

by the shapes of the isotherms (radial heat transfer) in the crystal 

and the melt. As discussed earlier, the radial heat transfer from the 

crystal is proportional to the crystal radius R, and the heat transfer 

The shape of the interface is basically determined 

from the melt to the interface is proportional to R 2 . Therefore, a suitable 

correlating equation for the interface shape at constant crucible temperature 

can be defined as: 

-. 
c 

Ar = aR - bR2 ( 3 4 )  
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In Equation ( 3 4 )  the first term contributes to the concavity of the 

interface and the second term to the convexity of the interface. The 

values of the constants for each crucible temperature are shown in 

Figure 15. 

is excellent. This indicates that Equation ( 3 4 )  is a suitable correlating 

equation. 

The agreement between the equation and the computer results 

Figure 16 shows the variation in the interface shape with the 

crucible temperature (defined as AT) at various crystal radii. The 

variation of Ar with AT is linear at all the crystal radii. Similar 

results were also obtained by Kobayashi (1981). This linear relationship 

between AT and Ar is expected since at constant radius the radial heat 

transfer from the melt to the interface increases linearly with AT. 

Therefore, at constant crystal radius 

A r  = ArO - CAT 
and the Aro gives the interface shape under the maximum pulling rate 

(35) 

conditions when the melt is maintained at the melting point. Note that 

under these conditions the interface shape is always concave since there 

is no radial heat transfer from the melt. In this region, the concavity 

of the interface (Are) starts decreasing as the crystal radius approaches 
the crucible radius. This is due to heat transfer effects from the crucible 

wall. 

To obtain the combined relationship between the interface shape Ar, 

R and AT, Equations ( 3 4 )  and (35) are combined. The coefficients a and 

b of Equation ( 3 4 )  are seen to obey a linear relationship with respect to 

AT. Therefore, the equation for the interface shape Ar, as a function 

of A T  and R, can be written as: 
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Ar = (al - a2 AT) R - (bl - b2 T) R2 
- (alR - blR2) - (a2R - b2R2) AT 
= Aro - (aZR - b2R2)AT 

Thus four parameters are needed to describe the relationship between the 

interface shape At, R, and AT. In Equation (36c), the first term 

(Are) can be looked upon as the interface shape under the maximum pulling 
rate conditions. In this case AT is zero and there is no heat transfer 

from melt to the interface. This term describes the shape of the isotherms 

in the crystal generated by the radial heat transfer from the crystal 

side surface to the surroundings. This term contributes to the concavity 

2 of the interface. The second term (a2R - b2R )AT describes the effects 
of the crucible wall (aZRAT) and the radial heat transfer from the melt 

to the interface (b2R AT) and Contributes to the convexity of the inter- 

face. 

variation of coefficients Aro and c in Equation (35) with respect to the 

crystal radius R. It was seen that both coefficients can be described by 

2 

The form of Equation (36) was further verified by observing the 

a second order relationship of the form (a'R - b'RL). 
leads to the form given in Equation (36). 

This approach also 

Having chosen a suitable correlating form, Equation (36), the co- 

efficients als bls a2, and b2 were also estimated simultaneously using the 

least-squares technique and the values obtained are: 

a2 - 1.088 x loe2, b2 = 9.199 x 

Thus, Equation (36) is a suitable representation for the interface shape 

for the conditions given in Tables 3 and 4. 

constants are, of course, only valid for these conditions and are also 

based on the conduction dominated, rigorous model. These constants can 

also be obtained for other operating conditions. 

al = 1.556, bl = 0.172; 

with R and Ar in cm and AT in K. 

The values of the correlating 
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2. Effects of Crucible Wall and Melt Level a 
The increasing height of the crucible wa 1 results in -.icreasing 

convexity of the interface. 

be expressed in terms of melt volume alone via Equation ( 2 8 ) .  

of melt volume alone (dashed lines) as well as the coupled effects of 

melt volume and the height of the exposed crucible wall (solid lines) 

are shown in Figure 17. The effect on the interface shape of melt volume 

alone is small and can be neglected in the simple model. On this basis, 

the correlating equation for the interface (during the entire period of 

growth of a constant diameter crystal) is reduced to the following form: 

The effects of h and hc on the interface can 

The effect 

Equation (37) was found to give the best fit of the sirnulated data and 

the parameters are as follows: a 
B,' = 2.733 cm 

cm 62' = 0.1335 

cm 6,' = 4.48 10-4 

64' = 3.039 x 10-2 

The accuracy of the simple model is thus improved by including the 

effect of the height of the exposed crucible wall. 

rate and interface shape are correlated in a satisfactory manner by these 

equations. 

C. OPERATING STRATEGY 

Both the pulling 

We now demonstrate the use of the simple model to determine the 

operating strategy during a growth cycle. The various stages of growth 

can be characterized by the remaining melt volume present in the crucible. 
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Equations (31) and (37) are then used to calculate the pulling rate and 

crucible temperature needed for Operating at a constant crystal radius. 

Various operating strategies can be readily examined. We shall discuss 

a few of these. 

1. Constant Pull Rate, Varying Crucible Temperature Strategy 

This is the scheme used in some of the earlier crystal growth processes. 

Here AT is determined from Equation (31) as a function of Vm as 

V* - a1 - a2'vm 
a3'Vm - a41 A T  = 

and the corresponding values of Ar can be calculated from Equat-on (37). 

Here V* is the set pull rate. Note that the interface cannot be 

controlled by this strategy. This strategy is shown in Figure 18 €or 

three values of v* of 5, 10 and 15 cm/hr. It is seen that the crucible 

temperature should be progressively decreased with decreasing melt volume 

to keep the diameter constant. This means that crucible temperature 

is decreased with time. As a result the concavity of the interface will 

increase from the seed to the tail end of crystal, as shown in Figure 18. 

2. Constant Crucible Temperature Varying Pull Rate Strategy 

This can be analyzed in a similar manner. Here the pull rate for 

a set temperature AT* can be calculated from Equation (31). The pull 

rate has to be decreased progressively with time (or decrease in melt 

volume) to offset the increasing radiation heat transfer to the crystal 

from the exposed portion of the crucible wall. This strategy is therefore 

not suitable for the complete growth cycle as the pull rate may drop below 

unacceptable levels after some time. Therefore, one modification is to 

fix the lower and upper limits to the pull rate and keep the temperature I 
I 
I constant as long as the pull rate stays within these limits. If these limits 
1 
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are exceeded, a new crucible temperature (lower temperature to increase the 

pull rate) is set so that the pull rate is now back within the prescribed 

limits. Again, the interface shape varies in accordance with Equation (37) 

and cannot be controlled Independently. 

3. Varying Pull Rate and Crucible Temperature Strategy 

In this strategy we have two degrees of freedom and therefore both 

the crystal radius and interface shape can be controlled simultaneously. 

The importance of controlling the interface shape during the growth process 

has been emphasized by several investigators. 

crystal is closely associated with the nature of the interface shape 

maintained during growth. This strategy can be executed in the following 

manner. For a desired Ar, calculate AT from Equation (37) at any given 

stage of growth, k., for a given value of Vm. 

ing v from Equation (31). The strategy is plotted in Figure 19. Both 

pull rate and crucible temperature are now decreased with time (decreasing 

melt volume). 

simulated parameters given in Tables 3 and 4 and for a conduction dominated 

situation. The concepts behind the simple model and the operating strategy 

shown in Figure 19 are, however, general and can be readily applied to 

practical CZ growth. 

article (Srivastava, et. al., 1986). 

The quality of the growing 

Now calculate the correspond- 

The numerical results are only valid within the range of 

The details of this study are published in a recent 
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VI. EFFECTS OF JET COOLING ON CZ CRYSTAL GROWTH a As discussed previously, the crystal growth process is primarily 

governed by the energy balance at the crystal melt-interface. 

dT) (39) 
dT Psv AH COS a (- ks ;i;;) - (-ka dn 

The above equation determines the growth rate (productivity of the puller) 

and shape of the crystal-melt interface (indicates the quality of the 

growing crystal) for a fixed radius of the crystal (Srivastava, et. al., 

1985a). On the other hand, for a fixed pull rate, this energy balance 

equation can be used to determine the crystal diameter and the interface 

shape (Derby and Brown, 1986). 

In general, the growth process can be monitored by controlling any of 

the three terms in Equation (39). Examples of this are: (1) by continuous- 

ly adjusting the pulling rate of the crystal, the pulling rate can be kept 

equal to the growth rate and hence the crystal with a desired constant 

diameter can grow; (2) the pulling rate can be kept constant during the 

growth and the second term on the right hand side of Equation (39) can be 

adjusted by changing the heater power (crucible temperature) so that the 

growth rate is balanced by the pulling rate. This is often done in practice. 

The first quantity on the right hand side of Equation (30) represents 

the heat loss from the crystal and is automatically fixed by the furnace 

design and the operator does not have any control over it. 

the main portion of this heat loss from the crystal to the surroundings 

takes place by radiation (heat loss by convection is small). 

which provides control over the heat loss  from the crystal to the ambient 

I s  to change the dominant mode of heat transfer from radiation to convection 

(locally near the region of interest), This can be accomplished by suitably 

blowing an inert gas jet on to the crystal surface near the crystal-melt 

This is because 

One approach 

a 
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interface. This is the idea that we pursue in the present study. Gas 

t 

jets for cooling applications are extensively used in industry, such as 

in annealing of non-ferrous sheets and in the tempering of glass. Jet 

cooling is particularly attractive in view of its low cost and fine degree 

of control which is achievable. 

increases the convective heat transfer coefficient by an order of magnitude 

The application of an impinging jet 

compared to the values usually associated with gaseous heat media (Gardon 

and Akfriat, 1966). By controlling the gas flow rate through the jet, the 

value of the heat transfer coefficient and hence the rate of heat loss 

from the crystal can be controlled. This scheme is especially suitable 

for control of the diameter of crystals of materials which have low thermal 

conductivity and which are opaque to infra-red radiation. 

workers (1970, 1971) were able to grow good quality crystals of barium 

Brice and co- 

strontium nitrate of constant diameter by blowing a gas jet over the growing 

crystal. Both the transverse and the axial gas jet positions were in- 

vestigated by these authors. completely satisfactory control of the crystal 

diameter by only changing the gas flow rate through the jet was demon- 

strated. The diameter stability was also much improved and about 70% of 

the attempts provided samples of useful size. 

Against this background, the main objective here was to investigate 

the effects of jet cooling on crystal growth using a detailed model of the 

CZ growth process. The detailed model and the solution procedure used for 

this analysis are described in the first and second quarterly reports and 

also in Srivastava, et. al. (1985, 1986). The detailed modeling of the 

heat transfer characteristics of the jet region was not attempted for this 

study. The correlations available in the literature (Gardon and Akfriat, 

1966; Ylachopoulos and Tomich, 1971), which are based on experimental 

f 

- 67 - 



data, were used for estimating the convective heat transfer coefficient. 

In the following sections the effects of jet cooling on various aspects 

of crystal growth are presented. 

A. PREDICTION OF HEAT TRANSFER COEFFICIENTS FROM JETS 

The gas blowing through a jet onto the crystal surface provides the 

necessary turbulence in the vicinity of the crystal side surface. 

increases the convective heat transfer coefficient between the crystal 

surface and the surrounding gas. 

heat transfer coefficient, the jet region is generally divided into two 

parts. 

the impingement zone and the maximum heat transfer coefficient is obtained 

in this region. 

by the direct interaction of the oncoming jet and the recipient surface. 

the impingement region is the region where the static pressure is greater 

than the ambient pressure. 

ing correlation, based on experimental data for estimating the heat 

transfer coefficient in the impingement region: 

This 

For the purpose of calculating the 

The region directly opposite to the jet nozzle is referred to as 

The properties of this region are primarily determined 

Gardon and Akfriat (1966) proposed the follow- 

Nuo = 1.2 (Reo) 0.58 (d/D)-O. 62 

Here d is the distance between the nozzle and the surface and D is the 

nozzle diameter. The Reynolds number, Re,, is defined on the basis of 

nozzle diameter and the gas velocity at the nozzle exit. 

number, Nuo = haD/ka, is based on the thermal conductivity of the blowing 

gas and ha is the heat transfer coefficient. 

The Nusselt 

After the flow leaves the impingement region, the flow stream lines 

are approximately parallel to the surface of the flat plate and the 

static pressure is very nearly equal to the ambient pressure. In this 
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region, known as the wall jet region, the flow is essentially that of a 

tangential wall jet. The heat transfer coefficient in the wall jet 

decreases with the increasing distance from the impingement region. 

heat transfer coefficient in this zone is given as a function of distance 

z from the impingement region by the following correlation proposed by 

Vlachopoulos and Tomich (1971): 

The 

In Equation (411, both the Reynolds number and the Nusselt number are 

calculated with respect to the distance, z, from the Impingement point. 

In the present study the horizontal (transverse) position of the 

jet was studied in detail. 

that the above correlations could be used. Since we are interested in the 

preliminary assessment of jet effects, this simplification is justified. 

The location of the jet was assumed to be just above the crucible wall. 

The height of the exposed portion of the crucible wall was assumed to be 

6 cm. Therefore, the jet strikes the crystal side surface at about 6 cm 

from the crystal-melt interface. 

the ratio of the distance from the crystal to nozzle diameter, was fixed 

at 60. 

- i.e., at various gas jet velocities. Figure 20 shows the variation in 

the convective heat transfer coefficient along the crystal surface for 

different Reynolds numbers (Equations (40) and (41)). The maximum point 

on each curve corresponds to the Impingement region. Curve 1 represents 

natural convection In the laminar region without the jet. Here the heat 

transfer coefficient is calculated by the standard correlations available 

in the literature (McAdams, 1954). Figure 20 reveals that the convective 

The curvature of the crystal was neglected so 

The aspect ratio of the jet (d/D), - i.e. 

The performance of the jet was studied at various Reynolds numbers, 

1: 
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heat transfer coefficient is increased considerably due to the jet. 

It was assumed that there is no enhancement of the heat transfer 

coefficient from the flat melt surface. 

as the jet impingement direction I s  parallel to the melt surface. 

However, the small region of the melt free surface near the crystal- 

melt-gas contact point I s  assumed to be almost 'vertical' due to the 

very small contact angle of silicon (11"). 

heat transfer coefficient between the melt and the surroundings is cal- 

culated using the correlation in Equation (41). the remaining portion 

of the melt free surface (away from the crystal-melt-gas point of 

contact) is assumed to lose heat by natural convection in the laminar 

regime. The heat transfer coefficient is calculated using the standard 

correlation (McAdams, 1954). 

This is a reasonable assumption 

In this region the convective 

B. CONTROL OF CRYSTAL DIAMETER 

The important operating variables affecting crystal growth are the 

pulling rate, the crucible temperature and the convective heat transfer 

coefficient from the crystal side surface to the surroundings. This co- 

efficient can be adjusted by changing the parameters of the jet. As dis- 

cussed earlier, the change in any of these variables will influence 

the respective terms in the energy balance, Equation (391, and thus the 

thermal field around the crystal-melt interface will change. This will 

directly affect the crystal diameter and the shape of the crystal-melt 

Interface. The output variables which are required to be controlled in 

order to produce a dislocation free crystal are the crystal radius, R, 

and the shape of the crystal melt-interface, Ar. The parameter is defined 

In Equation (17). It has been well established that to have uniform radial 

distribution of the dopants in the crystal a planar interface (Ar= 0) 

should be maintained during the crystal growth. 

-. 
-* 
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Based on the above discussion, the growth process can be represented 

by a block diagram as shown in Figure 21. 

mentioned that during crystal growth in commercial practice, the crucible 

and the crystal are rotated 

homogenity of the melt and the crystal. 

influence on the melt hydrodynamics and hence on the thermal field in the 

melt due to the interaction of forced and natural convection. 

for the purpose of this study, the effects of melt hydrodynamics were 

neglected and conduction was assumed to be the dominant mode of heat transfer 

in the melt (Srivastava, et. al., 1985)). Next, the effects of jet cooling 

on the pulling rate for a fixed crystal diameter (or on the crystal diameter 

for a fixed pulling rate) are examined. 

(At this point it should be 

in opposite directions to provide radial 

The rotation has a significant 

However, 

In this study the crucible temperature was maintained at 1800 K 

and the effects of jet cooling were examined at different crystal radii 

(3 cm to 9 cm). 

levels of jet cooling. 

these cases is as shown in Figure 20. Figure 22 reveals that as the level 

of jet cooling increases, the crystal is able to lose more heat to the 

surroundings and this results in a corresponding increase in the growth 

rate. 

Figure 22 shows the changes in the pulling rate at various 

The variation of ha along the crystal length for 

Thus the puller can be operated at higher pull rates which increases 

the productivity. 

As proposed by Kim et. al. (1983) and Srivastava et. al. (1986), 

the relationship between v and R at constant crucible temperature can 

be described as 

v = - -  A B  
R 

where A and B are constants. 

the crystal per unit area of the interface and the term B I s  porportional 

The term A/R represents the heat loss from 
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to heat input from the melt to the interface per unit area. 

cases in Figure 22 were approximated by the relationship given in Equation 

(42) and the results are shown in Figure 23. 

approximate predictions obtained by Equation (42) and the exact simulated 

behavior of v vs. R shows good agreement. 

is measured by the root mean square deviation, ems, 

The various 

The comparison of the 

The accuracy of the approximation 

where yt and y 

respectively and N is the number of data points. 

for all the cases are given in Figure 23. 

represent the effects of jet cooling on the crystal surface and are a 

measure of the convection heat transfer coefficient generated by the jet 

action. 

by the effect of jet cooling on the melt meniscus near the crystal edge 

and by the resulting complex radiation interactions. 

jet-cooling increases, the portion of the melt-free surface close to the 

crystal is able to lose more heat to the surrounding and thus the heat 

input (B) to the crystal-melt interface decreases. The detailed mathematical 

dependence between A and ha or the jet parameters, such as the gas 

velocity through the jet nozzle, is difficult to establish as A also 

contains the contribution from the radiative heat transfer. In addition, 

both ha and the radiative heat losses vary considerably over the length 

of the crystal. 

1. Control of Diameter Via Pull Rate 

are the true and predicted values of a variable y P 
The values of ems 

The values of the parameter A 

The change8 in parameter B for various Reynolds numbers are caused 

As the level of 

One approach t o  growing crystals with constant diameter is to operate 

the furnace at constant heater power and at fixed level of jet cooling, 
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* while the adjustments in the pulling rate are made to control the diameter. 

In order to consider the sensitivity of the radius change due to changes 

in pulling rate, Equation (42) is expressed in differential form as: 

R2 dR = - (si-) dv (at constant T, and ha) ( 4 4 )  

Now, if the crystal pulling rate is used to control the diameter, then 

the pulling rate has to be adjusted such that it balances the growth rate 

which is determined by the heat balance considerations. 

looked upon as the error in the pulling rate. 

if the pulling rate is exactly equal to the growth rate and thus the crystal 

diameter will remain constant. 

increasing with increasing intensity of the jet cooling, it can be seen 

that the same error in the pulling rate will produce a smaller change in 

the crystal diameter at higher levels of jet cooling on the crystal side 

surface. 

region. Similar conclusions were reported by Brice et. al. (1970, 1971) 

based on their experimental investigations. 

2. Control of Diameter Via Gas Jet 

Here dv can be 

Note that dv will be zero 

Since the values of A (a measure of ha) are 

i 

In other words the crystal diameter will be more stable in this a 

In the case where crystal growth at constant pulling rate and constant 

crucible temperature is desired, the gas flow rate through the jet can 

be used to control the diameter changes in the crystal. 

the gas flow rate through the jet will change the convective heat transfer 

coefficient and hence the extent of heat losses from the crystal. 

the growth rate of the crystal can be balanced with a set pulling rate. 

As mentioned earlier, the parameter A is proportional to the value of the 

heat transfer coefficient or the effects of the jet cooling. 

crystal growth at a constant pulling rate and a constant crucible temperature, 

The changes in 

Thus, 

Therefore, for 
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the change in crystal radius due to changes in the level of jet cooling 

can be derived from Equation (42) and is given by: 

R dR = (i) dA (at constant v and Tc) 

In the above equation the changes in parameter B due to variations in 

jet-cooling have been neglected. According to Equation (451, the 

crystal diameter will increase with increases in jet cooling at a constant 

pulling rate and constant crucible temperature. This is expected since 

with the increase in cooling of the crystal, the solidification rate at 

the crystal-melt interface will increase. 

of a larger diameter crystal unless the pulling rate is increased. 

Equation (45) indicates that the crystal diameter will be more stable 

during growth at high values of A (high levels of jet cooling). 

in this case (Equation (45)) the changes in diameter are proportional to 

R. On the other hand, in Equation (44) the changes in diameter are 

proportional to R2. 

in the gas flow rate through the jet would be easier than with adjustments 

in the pull rate. 

3. 

This will result in the formation 

Further, 

Notably, 

This implies that diameter control with adjustments 

Control of Diameter Via Crucible Temperature 

The currently used growth process is generally controlled by adjusting 

the crucible temperature. 

temperature on growth rate and interface shape at various levels of jet 

cooling are now examined. 

The effects of the changes in the crucible 

Figure 2 4  shows the variation in growth rate with respect to changes 

in the crucible temperature. 

The growth rate continuously decreases as the crucible temperature increases. 

The crystal radius is kept constant at 6 cm. 

This relationship between the growth rate and the crucible temperature e 
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(AT - Tc - Tm) can be assumed to be linear. 
approximation and the values of the parameters of the linear model are 

given in Figure 24 for various levels of jet cooling. 

growth rate on A T  can be written as: 

The accuracy of the linear 

The dependence of 

- bAT = vmax 

The parameter b is a measure of the heat transfer coefficient from the 

melt side to the interface and changes little (lines are parallel) with 

the increasing cooling of the crystal by the jet. This is expected since 

the term bAT in Equation (46) represents the heat transfer from the melt 

to the interface and this is independent of the effects of the jet cooling 

on the crystal side surface. Small changes in the parameter b are due to 

the fact that the effects of jet cooling on the rnelt meniscus were incor- 

porated into the study. The growth rate under the conditions when there 

is no heat transfer from the melt to the interface (AT = 0) and the melt 

is at a uniform melting temperature is given by vmax. In these limiting 

conditions the growth rate is primarily controlled by the extent of heat 

loss from the crystal and hence increases with the increased cooling of 

the crystal by the jet (Figure 24). Now, if the growth takes place at 

constant pull rate and at a fixed level of jet cooling and the diameter is 

controlled by adjustments in the crucible temperature, then the change in 

crystal radius with the changes in Tc can be expressed as: 

dR (-) 3R dTc (at constant v and ha) 
aTc v,ha 

R2b - A dTc 
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In Equation (47c) parameter b (the heat transfer coefficeint from the melt 

to the interface) can be assumed to be independent of R. 

independent of the effects of the jet cooling, the change in the crystal 

diameter is proportional to R /A (same as in Equation ( 4 4 ) ) .  Therefore, a 

small fixed error in the crucible temperature will produce a smaller 

change in the crystal diameter at higher levels of jet cooling. Thus, in 

the environment of increased jet cooling of the crystal, the crystal 

diameter will be more stable. This can also be understood from Equation 

(391, since to balance the changes In the heat transfer from the melt to 

the interface due to the changes in the crucible temperature, a small 

change in the crystal diameter will occur at high values of ha to balance 

the energy balance. 

change in diameter will be required to balance Equation (39). 

Since b is also 

2 

On the other hand, for small values of ha, a large 

Comparing Equations (44), (45), and (47), it appears that the best 

control of the diameter will be achieved when jet velocity is used for 

controlling the diameter, since in this case the changes in the diameter 

are proportional to only R as compared to R2 in the other two cases when 

either pulling rate or crucible temperature is used as manipulative 

variables. 

The effects of jet cooling on interface shape and the unique possi- 

bility of control of the crystal diameter and interface shape in presence 

of jet cooling are reported in our recent publication (Srivastava et. al., 

1986b). 
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VIII. MODELING OF MELT HYDRODYNAMICS 

The hydrodynamics and heat-transfer in the melt can be described 

mathematically by the equations of continuity, motion and energy. 

system of equations can be cast into a number of different formulations. 

Two of these are particularly popular for use in numerical simulations. 

The first is the velocity-pressure formulation, where the equations are 

solved in terms of the primitive variables, c. the velocity components 
and the pressure. The second is applicable for two-dimensional problems 

including those which are axisymmetric. 

is defined and solved along with the vorticity transport equation. 

advantage of this formulation is that as continuity is automatically 

satisfied, the number of equations is reduced by one. The disadvantage 

is that boundary conditions are more difficult to apply. At solid 

boundaries, it is required that the stream function be a constant and 

that its normal derivative be set to the tangential velocity of the 

surface. This can only be accomplished by determining the appropriate 

boundary condition for the vorticity at the surface. 

doing this is given by Langlois and Shir (1977). 

This 

In this case a stream function 

The 

One method for 

For the preliminary hydrodynamics model, the velocity-pressure 

formulation was selected to avoid the boundary condition complications 

associated with the stream function-vorticity formulation. 

boundary conditions will be particularly advantageous when extending the 

model to irregular geometries. 

The simpler 

The following assumptions are frequently made when deriving a mathe- 

ematical model for the hydrodynamics and heat transfer in Czochralski 

melts: 
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1) Bulk flow approximation (described below) 

2) Boussinesq approximation 

3) Pseudo-steady-state 

4) Constant temperature at the crucible wall 

5 )  Thermally insulated melt-gas interface 

6) Thermally insulated crucible bottom 

7) Negligible viscous dissipation 

The bulk flow approximation is the assumption of flat melt-crystal 

In general, these interfaces will not be flat and melt-gas interfaces. 

and the solution obtained will not be valid in their vicinity. The 

solution, should however, be reasonably accurate in the bulk fluid. 

The Boussinesq approximation is outlined in Bird, Stewart and 

Lightfoot (1960). 

equation of motion except the body force term. 

expanded in a Taylor series in temperature which is truncated after the 

linear term: 

Density differences are neglected in all terms of the 

Here the density is a 

*Y' 

CI. 

. -.  . .  

The quantity 8 is the coefficient of volume expansion and the bars 

denote reference quantities. 

is frequently used in solving problems involving natural convection. 

This form of the Navier-Stokes equations 

During the process, the melt is depleted as the crystal grows. 

Since the volume of the melt changes with time, no real steady-state 

exists. 

1 mm/min, however, It is obvious that the volume of the melt changes at 

a very slow rate. Therefore, depletion of the melt will generate a 

negligible amount of flow compared to the other convection mechanisms. 

If one considers that the growth rate is of the order of 

a 
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For this reason, unless one is operating in an oscillatory or turbulent 

regime, a pseudo-steady-state can be said to exist at any time. 

Viscous dissipation gives a negligible contribution t o  the energy 

equation. 

large (80 - 100 K) temperature variations in the melt. 
A. MODEL EQUATIONS 

This is due to the low viscosity of molten silicon and to the 

The Navier-.Stokes equations with Boussinesq approximation for an 

axisymmetric system are as follows: 

V and Vz are the radial, azimuthal, and axial velocities, where Vr, 

respectively. These equations must be solved along with the continuity 
e 

equation, 

avz i a  
r ar a2 
- -(rVr) + - = 0 

and the energy equation, 

aT 

. 

where the viscous dissipation terms have been neglected, and a is the 

thermal diffbslvity. This I s  a non-linear, second-order system of five a 
mutually coupled partial differential equations. 
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B. BOUNDARY CONDITIONS 

For the velocities, the no-slip boundary condition is applied at 

the solid surfaces and the thermocapillary flow condition is applied at 

the free surface. 

symmetry (r=O). 

above the melt. The temperature at the growth interface is taken to be 

that of the melting point of silicon. The derivative of the temperature 

normal to the free surface and normal to the crucible bottom is set to 

zero (thermally insulated). The temperature at the crucible wall is 

assigned some constant value. These boundary conditions will be presented 

in non-dimensional form in the following section. 

The symmetry condition holds along the axis of 

The pressure on the free surface is that of the gas 

It is convenient to non-dimensionalize the equations in order to 

identify the relevant non-dimensional groups with which the stem can be 

characterized. It is also desirable to scale the dependent variables 

such that they lie within some convenient interval (0 to 1 for dimension- 

less temperature, -1 to 1 for the dimensionless velocities). 

in mind, the following non-dimensionalization scheme was used: 

0 
With this 

* r = Rcr 

* z = Rcz 

'r 'emax v *  r 

vz - %maX V* 2 

- 85 - 



where the asterisk denotes the non-dimensional variable. The value of 

the maximum azimuthal velocity, will be either the velocity at mxs 

the crystal edge or at the crucible wall, whichever I s  greater. In 

cases where there is no rotation, VemX has no physical meaning but is 

simply a scaling factor for the velocities. 

Substitution of ( 5 4  - 60) into Equations (49 - 53) and dropping 
the asterisks yields: 

i a  - -(rV ) + 
r ar 

6T 
0, - ar 

where 

Re - 
Or - 

RcVe m= 
V 

2 
Y 
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(68) 
U 
V 

Pr - - 
Taking advantage of symmetry reduces the three-dimensional problem 

into a two-dimensional one in the r-z plane. 

the melt-crystal and melt-gas interfaces are considered to be flat (bulk 

flow approximation). 

For this preliminary model, 

On the axis of symmetry (r - 0), the following symmetry conditions 
hold: 

Along the bottom of the crucible ( z  = 0), the following conditions are 

in effect: 

aT 
r Vr - 0, V e =  Br, V, = 0, a - 0 or T - 1 

On the crucible wall (r = Rc). 

Vr 0, Ve = B, V, 0, T = 1 

Along the crystal (z - H/Rc, 0 5 r 2 R/Rc). 

Vr = 0, Ve = Ar, V, = 0, T = 0 

At the melt-gas interface (z - H/R,, R/Rc 2 r 5 1). 

Equation 73 assumes that the gas above the melt I s  Inviscid. 

The constants A and B are crystal and crucible rotation parameters, 

respectively. The restrictions on these parameters are given below: 

AR 
-1 c - - - < l a n d - 1  < B  - 5 1  

RC 

(70) 

(74) 
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E i t h e r  AR / R e  o r  B must be equa l  t o  21 for t he  characteristic v e l o o l t j  

used i n  t h e  Reyno lds  number t o  o o r r e s p o n d  t o  t h e  a c t u a l  maximum 

azimuthal  v e l o c i t y .  The va lues  of A R / R o  and B corresponding t o  var ious 

operating modes is g iven  i n  Table  5 .  

The Reynolds number def ined  by Equat ion ( 6 6 )  can be related 

t o  t h e  crystal and c r u c i b l e  Reynolds numbers def ined  I n  Section I1 by the 

fol lowing expres s ions  : 

BRe 
Rec = - 

2n 
(76)  

The above  boundary  c o n d i t i o n s  do n o t  i n c l u d e  t h e  e f f e c t  of 

t h e r m o c a p i l l a r y  flow. To i nco rpora t e  t h i s  effect, one starts w i t h  a 

force ba lance  on t h e  flat melt-gas i n t e r f a c e :  

p- ’”r II -- a a ~ ~  

az ar 

where u is the surface tension. IntroGacing t..e thermocapillary 

coefficient, 

1 aaST 
U aT c,, = - - - 

into Equation (77) one obtains: 
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Table 5 

Crystal and Crucible Rotation Parameters 

Definition: 

2 

A . =  - 'A 

Ehmples: 

2 

B = -  'oRo 

RllJ A- B 

Ro rotation 0 

+ Crystal rotation only - 
Crucible rotation only 0 

Isorotation of orystal  rnd oruoible + 

Counter-rotation of  crysta l  and crucible + 

0 

0 

+ 

--. 

- -  . .; 
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Putting Equation (79) into non-dimensional form yields: 

0 

Here Ma is the Marangoni number, a parameter frequently used to 

characterize thermocapillary flow. 

C. SOLUTION PROCEDURE 

The system of Equations (61 - 65) was 
Galerkin finite element method. The finite element method was selected 

solved numerically by the 

because it can readily handle irregular geometries and moving boundaries, 

which must be considered if non-planar interfaces are to be handled. 

The finite element method has the additional advantage of a more easily 

graded mesh than say the finite difference method, which is its chief 0 
competitor for flow simulation. 

of differential equations is approximated by a system of algebraic equations 

by discretization of the problem domain. 

In the finite element method, the system 

A non-linear system of differential 

equations will result in non-linear algebraic equations, which must be 

8olved by some Iterative technique. For details of this method in 

general, see Rao (1982) and/or Finlayson (1980). For the specific 

problem of solving the Navier-Stokes equations, there is the excellent 

book by Taylor and Hughes (1983), and the valuable work of Gresho et. a 

(1980). 

D. RESULTS 

The finite-element code developed in this work is capable of 

solving steady-state problems of hydrodynamics and heat-transfer in an 

axisymmetric geometry. Arbitrary boundary shapes may be specified, as 
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long as the shape of the region remains roughly rectangular. 

only the top surface of the melt is allowed to be non-planar. 

corresponds to the CZ-crystal growth geometry. 

At present 

This 

The full code solves simultaneously for the heat-transfer and 

hydrodynamics in the melt, which are coupled through the buoyant con- 

vection term. Additionally, an isothermal code was developed which has a 

considerably greater computational efficiency than the full simulation. 

The isothermal code can be used for the case where forced convection 

is the dominant mode of momentum transfer. It can also be used to 

determine the flow field directly adjacent to the crystal, which is of 

great importance to the mass-transfer in the melt. 

Some illustrated results based on the steady-state hydrodynamics code 

are now presented. We consider each flow mechanism separately-at this time to 

indicate the pertinent features. 

to be assessed together. 

higher Grashof numbers as the flow may be oscillatory. 

Subsequently all the factors will need 

Also a transient code may be necessary for 
- 

1. Natural Convection 

Figure 25 shows the case of natural convection alone for Gr - 2 x lo4. 
The positive values for the streamlines indicate that the flow is in the 

counter-clockwise direction. The flow pattern obsetved is that of a 

single convective cell with hot fluid rising at the crucible wall and 

cooler fluid descending In the center of the crucible. 

Figure 26 represents the flow obtained for Gr = 2 x lo5. Increasing 

the Grashof number results In a shift of the center of the cell towards 

both the wall and bottom of the crucible. Also as can be seen by the 

magnitude of the stream function at the center of the cell, the intensity 

of the vortex increases. As Gr l e  further increased, Crochet et. al. (1983) a 
- 91 - 
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have found that the number of convective cells can increase to two 01: 

more. After some critical value is reached (Crochet found this to be 

Gr = 10 7 for his geometry and gallium arsenide) an oscillatory regime 

is encountered. 

Natural convection enhances oxygen evaporation from the melt. The 

oxygen, as soon as it is dissolved from the silica crucible, is immediately 

convected upwards towards the melt surface, from which it can readily 

evaporate. Unfortunately this flow pattern results in a very poor radial 

dopant distribution, as the flow is radially inward at the crystal surface. 

The natural convection flow pattern was also simulated using a commercially 

available hydrodynamics simulation software package (FIDAP). The 

steady state version of FIDAP gave a stable solution for Gr = 10'. 

transient version gave an unstable oscillatory flow for Gr = 10'. 

The 

However we need to confirm this with further mesh refinement and such a work is in progress. 

2. Crystal Rotation 

The results of crystal rotation is again a single convective cell. 

Fluid is accelerated outwardly by the rotating crystal and drawn upward 

in the center of the crystal to conserve mass. As can be seen from both 

the streamlines and the azimuthal velocity (Figures 27 and 28 respectively) 

the flow is essentially a boundary-layer flow. 

This flow mechanism does an excellent job of reducing radial gradients 

in dopant concentration. Oxygen evaporation is inhibited, however, be- 

cause the clockwise vortex near the free surface blocks the transport of 

oxygen to the melt surface. Simulation studies using higher Reynolds 

numbers are in progress. 
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3. Crucible Rotation a 
Figures 29 and 30 depict the flow generated by crucible rotation 

alone. The low value of Re used is for computational simplicity. 

see from Figure 30 that there are sharp radial and axial gradients in the 

azimuthal velocity near the stationary crystal. 

One can 

The magnitude of these 

gradients increases as Re is increased, so that considerable refinement 

of the finite element mesh is required to obtain an accurate result. 

Implementation of this refinement would cause significant increases in 

the amount of computational time required. 

may be needed. 

A supercomputer program effort 

Time is available on supercomputer and this will be put 

tal 

to use. 

The flow pattern here is a single counter-clockwise vortex. This 

would tend to favor oxygen evaporation but vould be detrimental to the 

radial dopant distribution. Crochet et. al. (1983) have found that for 

higher Reynolds numbers, which are more in line with those observed in 

practice, a second vortex forms. 

rotating clockwise along the crucible wall. 

of oxygen to the melt surface. 

generally only rotated when the crystal is rotated at a higher rate. 

4. Thermocapillary Flow 

0 
This vortex is of low intensity, 

This will block the transport 

For these reasons the crucible is 

Thermocapillary flow can be Isolated from other flow mechanisms 

only in conditions of microgravity. 

it to be the dominant mode of momentum transport in microgravity. 

result of the simulation I s  shown In Figure 31. 

that of natural convection, but is restricted to the area directly below 

the free surface. The remainder of the melt is essentially stagnant. 

In fact, Langlois (1980) has found 

The 

The flow is similar t o  

c 
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Due to the limited extent of the vortex, this flow pattern will not 

enhance oxygen evaporation as much as in the case of natural convection. 

Radial segregation of dopant will be poor for this case as well. 

5 .  Heat Transfer 

Figures 32 and 33 show the transition from the conduction dominated 

In Figure 33 there is case to the case where convection is significant. 

a dramatic change in the isotherms from the previous cases (no flow 

situation), indicating that the convective terms have become significant. 

(Note that the Grashof number 

actually observed in practice). The above results tend to cast some 

doubts on conduction dominated models (those that neglect the hydro- 

dynamics in the melt). 

used here is very low compared to those 

The above results are not conclusive, however, as radiation from 

the melt surface is not considered. 

appropriate boundary condition along the crucible bottom. 

work it is considered to be thermally insulated. Crochet et. al. (1983) 

specified that it had the same temperature as the crucible wall. 

et. al. (1984) chose a linear temperature profile decreasing towards the 

center of the crucible. The effect of these factors need to be examined 

in detail. 

code are not within the scope and time frame of the current study. 

Also there is some question as to the 

In the present 

Lee 

These studies and development of a transient hydrodynamics 

-. 
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VIII. STRESS ANALYSIS 

preliminary stress calculations were done to estimate the generation 
k 

of dislocations in the crystal. The temperature field maintained in the 

crystal during its growth by the Czochralski process plays an important 

role in determining the crystal quality. 

that the thermal stresses induced during the growth process are one of the 

major causes of the generation of dislocations in the crystal. The nature 

and the magnitude of the induced thermal stresses are directly related to 

the temperature profiles in the crystal. 

if the stress field in the crystal exceeds a certain threshold value. 

The motivation for this study was to investigate the induced 

thermal stresses in silicon crystals grown by the Czochralski process. 

The accurate estimation of the stress field in the crystal is closely 

linked with the knowledge of the realistic temperature field in the crystal. 

Therefore, the temperature field was predicted using the rigorous heat 

transfer model of the CZ apparatus, as described in Section 111. 

of the curved crystal-melt interface, predicted by the heat transfer 

It has been well established 

The dislocations are generated 

The shape 

P 

i 

r 

i 

i model, is included in the stress calculations. The stress field is cal- 

culated numerically using a finite element formulation and also with the 

plane strain approximation. 

& 

The concept of von Mises stress is used to ? 

examine the dislocation distribution in the crystal. 5 !! 
The calculation of the stress field is based on the theory of 

I 

i 

thermoelasticity. 

strains can be superimposed in Hooke's law. 

In this theory it is assumed that elastic and thermal 

The finite element for- 

mulation is based on the prtnciple of minimum potential energy. In f 

this approach the displacement field is derived from the known temperature 

field. 

ment field. The crystal is assumed to be an axisymmetric solid and 

The strain and stress field is then calculated from the displace- a 

@ 
1 
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therefore the displacement is confined to only radial, u, and axial, w, 

directions. The displacement along the &direction, v, is zero on 

account of symmetry. Axisymmetric ring elements with a triangular cross- 

section are used for the finite element formulation. The results of this 

study are briefly discussed next. 

Figure 34 shows the axial variation of the von Mises stress in the 

crystal at the outer edge. 

AT (TrZ0 - Tr,R) is also plotted. 

approximation are shown together with the rigorous finite element pre- 

dictions. The stress profiles basically follow the axial variation of 

the radial temperature variation. The plane strain approximation is able 

to predict the stress profile in a qualitative sense but it predicts much 

lower values of the stress. The von Mises stress profile has several 

maxima, the location of each coincides with the maximum in I AT I. The 

possibility of the dislocations generation is the highest around these 

maxima. However, one should keep in mind that the yield stress increases 

with decreased temperature so that a smaller AT at higher temperature is 

more likely to cause dislocations. 

induced stresses (and hence dislocation density) is to restrict the level 

of the radial temperature gradient in the crystal, especially in the region 

close to the interface. The extent of the radial temperature difference is 

mainly determined by the value of the Biot number and therefore lowering 

the Biot number will result in smaller stresses. 

lowering the heat transfer coefficient and/or increasing the ambient 

temperature and by suitable design of the furnace configuration. 

these changes in the parameters will lower the growth rate of the crystal 

and therefore an optimum needs to be found between increasing the growth 

The radial temperature variation 

The results based on the plane strain 

The key to reducing the level of 

This can be done by 

Of course, 

a 

I 
I 
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rate and restricting the extent of thermally induced stresses in the growing .. . 

crystal. 

The detailed distribution of the von Mises stress field in the crystal 
-. . . * .. 

is plotted in Figure 35 in the form of iso-stress contours. 

of the stress field matches well with the results of Duseaux (1983) and 

The pattern 

of Schvezov et. al. (1986). The region of maximum stress is about 10 cm 

above the crystal-melt Interface. It should be remembered that the maximum 

radial temperature gradient occurs in this region. The iso-stress lines 

with large stress values are concentrated at this axial location, par- 

ticularly near the outer periphery and around the center axis of the 

crystal. Thus maximum dislocation density is expected in this region. 

The minimum dislocation density at the wafer surface is found to be In the 

region which is between the center and the periphery. 

observed experimentally from the dislocation distribution revealed by x-ray 

This has also been 

topography of a cross section of the wafer (Chen and Holmes, 1983). 

stresses in the vicinity of the crystal-melt interface have low values. 

The 

This is due to the effects of the hot crucible wall which restricts the 

radial temperature variation In the crystal in this region. 

The detailed stress field needs to be analyzed in terms of resolved 

shear stress distribution on the wafer surface. This distribution can 

then be correlated with the expected defect density (wafer quality) on 

the wafer surface. This work is in progress but was not part of the 

1 ‘ *  

-5 . .  . .  

original objective of this study. 
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- 108 - 



IX. CONCLUSIONS 

A detailed heat transfer model for the simulation of the Czochralski 

(CZ) process has been developed. 

+ melt system and accounts for both direct and reflected radiation 
interactions among the various surfaces in the enclosure. 

transport in the melt is assumed to be by conduction only. 

the crystal-melt interface I s  not assumed "a-priori", but is predicted, 

along with the pull rates, as a part of the solutions. 

modular approach is used for the computer implementation. 

is flexible and can be readily extended without significant reprogramm- 

ing to accommodate a more sophisticated model for the melt which includes 

the melt hydrodynamics and subsequently the  effect of an applied magnetic 

field. 

The model considers the combined crystal 

The heat 

The shape of 

A sequential 

The algorithm 

The effects of the melt-gas meniscus and of various process parameters 

on the interface shape (crystal quality) and the pulling rate (process 

productivity) have been investigated in detail and explained. 

that the shape of the melt-gas meniscus has a significant effect on both 

the pulling rate and the interface shape and must be included for accurate 

modeling of the crystal growth process, especially when the three phase 

contact angle is very small (as in the case of silicon). 

It appears 

Radiation from the exposed crucible wall plays an important role in 

the growth process and it seems to control the extent of the radiation 

heat losses from both the lower portion of the crystal and from the melt. 

This Indicated the need for properly accounting for both direct and 

reflected radiation among the various 'surfaces' present in the crystal 

growing apparatus. This study confirms that Stefan's model I s  Inadequate 

to model the radiation heat exchange behavior (which I s  the dominant mode 
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here) in the enclosure and that detailed radiation calculations, as pre- 

sented here, are essential. 

Additionally, simple models have also been proposed which describe 
a 

the relationship between the important process variables affecting the 

growth process. 

from the results of the rigorous models or from actual operating data. 

The use of these models in implementing various operating policies has 

been demonstrated. 

The parameters of the model can be determined either 

A novel technique to improve the controllability of the crystal 

diameter has been introduced. 

vecting cooling component of the crystal by using gas jets. 

also facilitates a simultaneous control of crystal diameter and interface 

shape. 

The concept relies on regulating the con- 

This scheme 

i 

A preliminary computer code was developed for a steady-state model 

of the hydrodynamics of the melt. The model is useful for a quantitative 

study of the effects of various phenomena, such as natural convection, 

forced convection, and thermocapillary flow, on the melt flow field. 

However, it appears that in the real operating region, the melt flow field 

is of oscillatory nature and thus a transient code may be needed. Also, 

the melt hydrodynamics need to be coupled with the model of the crystal 

to develop a complete model of the CZ system. 

The distribution of dislocations in the crystal is qualitatively 

related to the thermally induced stress field. The stress field is 

calculated from the known temperature distribution and the finite element 

solutions of the thermoelastic equations. The magnitude of the induced 

stresses is mainly governed by the radial temperature gradients in the 

crys t a1 . a 

, 

I 



X. FUTURE EFFORT 

Future effort should concentrate on complete model validation by 

comparison to experimental data. 

specific areas, related to the CZ process is recommended: 

Extension of the model in the following 

1. 

2. 

3.  

4. 

Transient code needs to be developed to describe the hydrodynamics of 

the melt in the operating region of interest. 

Heat transfer model of the crystal + melt should be coupled with the 
melt hydrodynamics to develop a complete model of the CZ process. 

Effects of an applied magnetic field (both axial and transverse) to 

suppress the convective currents should be modeled. 

A model describing the solute transport in the crystal + melt is 

needed. 

radial dopant profiles. 

The model should be able to predict both the axial and the 

' .' 

'L ,  

-. 
d. 

-. 

2 ... - ,  
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XI. NEW TECHNOLOGY 

The work described within this report is related to two new technological 

developments. 

of the CZ process. 

It provides the elements for a future on-line digital control 

It introduces the concepts of improved growth rates 

via jet-cooling and simultaneous interface .shape-crystal 

via j et cooling. 

diameter control 

~~ 
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XIL NOMENCLATURE 

a 

D 

dc i 

dm 

fi 

Fij 

Gik 

Gr 

h 

mi 

empirical constants in equation (22a) 

empirical constant in equation (26) 

constant for convective heat transfer 

area of surface 'k' 

cross-sectional area of the crystal 

empirical constants in equations (24b) and (25) 

empirical constants in equation (26) 

specific heat of the crystal 

thermocapillary constant 

distance between the jet nozzle and tb.e crystal surface 

nozzle diameter (inner) 
- 

node spacing at radial position i in the z-direction in the 
crystal at the interface 

node spacing at radial position i in the z-direction in the 
melt at the interface 

fractional deformation of the interface at node i for updating 
the interface 

view factor from i to j 

radiation factor representing the fraction of the radiation 
emitting from surface 'i' which is absorbed by surface 'k' 

Grashof number, Gr - BgATR,  3 2  /V 

convective heat transfer coefficient 

height of the exposed portion of the crucible wall 

thermal conductivity of the gas phase in the puller 

thermal conductivity of the crystal 

thermal conductivity of the melt 

crystal length 

slope of the interface at location i 
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i 
Ma 

N 

NC 

NM 

NT 

N'O 

P 

Pr 

qR 

QS 

Q ! L  

Qf a r  
R 

RC 

R1 'R2 

Re 

ReC 

Res 

t 

T 

Marangoni number, Ma - CtcATRc/a 
direction of outward normal from the melt at the melt- 
crystal interface or melt-gas interface 

total number of surfaces 

number of surfaces for the crystal side 

number of surfaces for the melt surface 

number of surfaces for the .crystal top 

Nusselt numbers for jet cooling, hD/k, 

pressure 

Prandtl number, Pr = v/a 

heat loss by 

heat flux at the interface in the crystal 

radiation per unit area 

heat flux at the interface in the melt 

heat flux due to solidification at the interface 

radial coordinate 

crystal radius 

crucible radius 

principal radii of curvature of the melt surface 

Reynolds number, Re = Vemax R /V 

Reynolds number for jet cooling 

2 
Rc crucible Reynolds number Re, * - V 

2 
Rc crystal Reynolds number Res = -- 

V 

time 

temperature at position (r,z) 
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Ta average argon temperature 

TC crucible temperature 

Te effective temperature for radiation 

Teff 

Tk temperature of surface k 

effective temperature for radiation in the Stefan's model 

Tm 

Vr 

vz 

melting point of silicon 

radial velocity 

axial velocity 

v e  azimuthal velocity 

V crystal pulling rate 

maximum pulling rate "max 

vC 

vm 

volume of the crucible 

melt volume 

z axial co-ordinate 

z also represents distance from impingement point in 
equation (41) 

z l ( r )  

22(r) 

Greek Symbols 

equation of the interface shape 

equation of the melt free surface 

a thermal diffusivity 

al,a2,a3 empirical constants in equation (30) 

a i , a i  ,aj,ajempirical constants in equation (31) 
8 

Bi,Bi,B;,Bi empirical constants in equation (37) 

volume expansivity of the melt 

d 
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A H  

Ar 

A T  

pm 

P S  

5 

a 

V 

W C  

W S  

Subscript 

a 

i 

k 

m 

8 

r 

heat of fusion 

deviation of the interface from the planarity 

difference between crucible temperature and melting point 

density of melt 

density of crystal 

emissivity of surface indicated in the subscript 

Stefan-Boltzman constant 

kinematic viscosity of the melt 

surface tension of the melt 

viscosity of the melt 

dimensionless group defined -y Equat-Jn 

azimuthal co-ordinate 

crucible rotation rate 

crystal rotation rate 

18 

, 

i 

I 

! 
ambient 

radial position at the interface 

denotes kth surface emitting or receiving radiation 

melt 

crystal 

radiation 
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XIV. LIST OF FIGURES AND CAPTIONS 

Figure 1. Schematic of Czochralski Single Crystal Puller --- Indicates 
Radiation Interaction Between Various Surfaces. 

Figure 2. Overall Schematic of CZ Modeling. 

Figure 3. A Typical Finite Element Mesh with Triangular Basic Cells 
for Crystal + Melt. 

Figure 4. Temperature Field in the Crystal and Melt. 
Interface). 

(Flat Melt - Gas 

Figure 5. Temperature Field in the Crystal and Melt. 
Gas Interface). 

(Curved Melt- 

Figure 6. Effect of Crucible Temperature on Interface Shape. (Flat 
Melt - Gas Interface), 

Figure 7. Effect of Crucible Temperature on Interface Shape. (Curved 
Melt - Gas Interface), 

Figure 8. Effect of Crystal Radius on Interface Shape. 

Figure 9. 

Figure 10. Temperature Profile on Crystal Surfaces: Effect of 

Efficiency of Radiation of the Crystal Side Surface. 

Radiation Interactions. 

Figure 11. Variation of Growth Race with Respect to Crucible Temperature. -. . Detailed Model: **: Linear Model. 

Figure 12. Variation of V,, and B with Crystal Radius. -* . Simple 
Model: 0 ,*: Detailed Model Numerical Solution. 

Figure 13. Variation of Growth Rate with h and hc and Variation of 
Interface Shape with h,. 

Figure 14. Effect of Increasing the Height of Exposed Crucible Wall on the 
Pull rate; * Denotes the Simple Model while the Full Lines 
Denote Numerical Solution. 

Figure 15. Variation of Interface Shape with Crystal Radius. -: 
Detailed Model; **: Simple Model. 

Figure 16. Variation of Interface Shape with Crucible Temperature. -. . Simple Model; **: Detailed Model. 

Figure 17. Effect of Increasing Height of Crucible Wall on Interface 
Shape. 
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Figure 18. Operational Strategies of Varying the Crucible Temperature 
at Various Fixed Pull Rates and the Corresponding Interface 
Shape. 

Figure 19. Constant Diameter and Interface Shape Control by Simultaneous 
Adjustments in Pull Rates and Crucible Temperatures. 

Figure 20. Effects of Jet Cooling on the Convective Heat Transfer 
Coefficient. 

Figure 21. Important Input/Output Process Variables Affecting Crystal 
Growth by the CZ Process. 

Figure 22. Variation of Growth Rate with Crystal Radius at Different 
Levels of Jet-Cooling. 

Figure 23. Comparison of Pulling Rate versus Crystal Radius (v vs. R) 
at Different Levels of Jet Cooling. ***, + + + Simple Model. 

- Detailed Simulation, 

Figure 24. Effect of Crucible Temperature on Interface Shape at Various 
Levels of Jet Cooling. -* . Detailed Model: ***: Linear 
Model. 

Figure 25. Flow Field in the Melt for the Case of Natural Convection 
Alone, Gr = 2 x lo4. 

Figure 26. Flow Field in the Melt for the Case of Natural Convection 
Alone, Gr = 2 x 105. 

Figure 27. Effect of Crystal Rotation on the Melt Flow Field, Re = 200. 

Figure 28. Azimuthal Velocity Field in the Melt Due to Crystal 
Rotation, Re = 200. 

Figure 29. Effect of Crucible Rotation on the Melt Flow Field, Re = 1. 

Figure 30. Azimuthal Velocity Field in the Melt Due to Crucible 
Rotation, Re - 1. 

Figure 31. Effect of Thermocapillary Flow on the Melt Flow Field. 

Figure 32. Temperature Field in the Melt for the Case of Conduction 
Alone (NO FLOW). 

Figure 33. Effect of Natural Convection (Gr - 2 x lo5) on the Melt 
Temperature Field. 

Figure 34. 

Figure 35. 

Axial Variation of Von Mises Stress at the Outer Edge of Crystal. 

Von U s e s  Stress Field (am x 
With a Planar Interface. 

dyne/cm2) in a Crystal 
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XV. LIST OF TABLES 

Table 1. Summary of Studies in Hydrodynamics o f  CZ melts. 

Table 2. View Factor Calculation in Czochralski Puller. 

Table 3. Values of Physical Properties Used for Simulations. 

Table 4. Values of Process Parameters Used for Simulations. 

Table 5. Crystal and Crucible Rotation Parameters. 
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XVI. APPENDICES 

1. Procedure For Updating The Interface Shape And The Pulling Rate 

The procedure for updating the interface shape and the pulling rate 

Let zi (i-1, Z,..., nr), where nr is the number of nodes 

0 
is as follows: 

in the radial direction, define the z-coordinate of the interface. 

is the center point (r=O) and znr refers to the edge of the crystal 

z1 

(r-R). Equation (10) at i-nr is used to update the pulling rate as 

follows: 

The melt volume balance (Equation 12) along with the shape of the 

melt meniscus is used to update znr. 

[ill to (nr-l)] the following procedure is used. 

position corresponding to node i. 

into the crystal at the interface at node i. 

needs to 

to satisfy the heat flux requirement (Equation 10)). 

axial flux in the crystal (which is also assumed to be proportional to the 

overall flux as an approximation) at node i at the current interface 

To update the other points, 2%’ 

Consider a fixed radial 

Let dci - element size in the z direction 

Assume that the interface 

be moved a distance fidei in the positive z direction in order 
We then have the 

location as: 

where T2 is the temperature at zi + dei. 
Similarly the axial heat flux from the melt at node i at the current 

interface location is: 
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. .  

where dmi = element size in the z direction into the melt at the interface 

at node i and T1 I s  the temperature in the melt at location zl - dmi. 
The axial heat flux In the crystal at node i after relocation of 

I 

the Interface becomes: 

Qsi new I - 
Qs i 1 - fi 
Similarly the axial heat flux from the melt at node i after relocation a of the interface becomes: 

or 

dCi 
drni 

; where di = - 

Since the heat fluxes after interface relocation must satisfy 

Equation (10) we obtain: 

Qsi Q ki 
1 - fi 1 + fi di + Qfi 
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The values of fi can be calculated from the above equation. A semi- 

implicit rearranged form of this equation is 

Therefore the location of the new interface shape is given by 

zinew = ti + fi dci 

i = 1,2....,nr - 1 
This procedure I s  an adaptation of the method used by Kobayashi (1981) 

to the finite element solution case. 

In the context of finite difference solution method. 

Kobayashi (1981) used a similar approach 

A quadratic Interpolation of the predicted temperature profile is 

used for calculation of Qsi and Qgi in Equation (A7) and also for calculation 

of the slope of the interface. 
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